Elucidating the dynamic characteristics of antigen recognition
阐明抗原识别的动态特征
基本信息
- 批准号:2225947
- 负责人:
- 金额:$ 47.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Cells use surface receptors to sense their surroundings. Sensing relies on recognition of molecules by receptors. Effectiveness of recognition is routinely measured at steady state between single receptors and their bound molecules. However, new experiments showed that cells essential for the immune system may probe the binding quality of their antigen receptors in a highly dynamic and collective manner via tactile senses (i.e., neither at steady state nor using independent receptors). Curiously, by forming transient cell-cell contact, immune cells collect receptor-bound antigens into clusters and extract them using pulling forces generated inside the cell. The PI aims to investigate the functional impacts, design, and control of active, physical sensing of cells. Through a close synergy between theory and experiment, the proposed research will elucidate the physical principles behind the dynamic characteristics of antigen recognition, advance our understanding of information transfer via cell-cell interaction, and uncover adaptive benefit that active sensing might confer. Broader impacts of the project lie in a close integration of education and outreach activities with the research program, to engage students at all levels with the role of physics in cellular dynamics, function, and adaptation. The PI will develop web-based learning modules to deepen the understanding of membrane-mediated interactions and the origin of molecular cooperativity and antagonism. She will expand on a new course to teach the elements of information and control theory with applications to sensing and dynamic adaptation in biology. The PI will continue to provide authentic research experiences in her lab by serving as a faculty mentor through the Computational and Systems Biology program at UCLA. Diverse lymphocytes expressing unique surface receptors work collectively to recognize myriad and changing microscopic entities invading a living organism. Potent protection relies on positive selection of immune cells expressing high-affinity antigen receptors. However, this process of selection appears surprisingly ineffective and hits a modest ceiling of binding affinity much lower than expected. Experimental data have started to reveal that immune recognition is far beyond equilibrium receptor-antigen binding; instead, cells exert contractile forces to actively extract antigen from antigen-presenting cells. The PI hypothesizes that the apparent ineffectiveness of selection is not an artifact due to unavoidable randomness, but rather, can be a direct consequence of the non-equilibrium nature of antigen recognition. She proposes to explore an explanation by establishing a mapping from molecular recognition to organismal responses via cellular dynamics and active force usage. This project will focus on (a) determining how and why cells create and maintain a multifocal contact pattern during antigen recognition; (b) examining the capacity of physical extraction of antigen in achieving affinity discrimination over a broad dynamic range; and (c) identifying information bounds and discovering cellular strategies to optimize competing functions. Mathematical and computational modeling will be combined with in vitro and in vivo experiments to clarify the functional consequences of the nonequilibrium nature and dynamic characteristics of antigen recognition, and to access whether and how cells can utilize physically acquired information to guide adaptation. While the role of biochemical circuitry in achieving the remarkable specificity and sensitivity of immune recognition has been extensively explored, this research on physical dynamics of immune cells in native environment is complementary to most ongoing work in the field, and could uncover unexpected functional objectives of active sensing by cells.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
细胞使用表面受体来感知周围环境。感知依赖于受体对分子的识别。识别的有效性通常是在单个受体及其结合分子之间的稳定状态下进行测量的。然而,新的实验表明,对免疫系统至关重要的细胞可以通过触觉(即既不处于稳定状态也不使用独立的受体)以高度动态和集体的方式探测其抗原受体的结合质量。奇怪的是,通过形成短暂的细胞-细胞接触,免疫细胞收集与受体结合的抗原,并利用细胞内产生的拉力将其提取出来。PI旨在研究细胞主动物理感知的功能影响、设计和控制。通过理论和实验的紧密结合,这项拟议的研究将阐明抗原识别动态特征背后的物理原理,促进我们对细胞-细胞相互作用信息传递的理解,并揭示主动感知可能带来的适应性好处。该项目更广泛的影响在于将教育和推广活动与研究计划紧密结合,让所有级别的学生参与到细胞动力学、功能和适应方面的物理学角色中。PI将开发基于网络的学习模块,以加深对膜介导的相互作用以及分子协同和拮抗的起源的理解。她将扩展一门新课程,教授信息和控制理论的元素,并将其应用于生物学中的传感和动态适应。PI将继续在她的实验室提供真实的研究经验,通过加州大学洛杉矶分校的计算和系统生物学项目担任教师导师。表达独特表面受体的不同淋巴细胞共同作用,识别入侵生物的无数和不断变化的微观实体。有效的保护依赖于表达高亲和力抗原受体的免疫细胞的积极选择。然而,这一选择过程似乎出人意料地无效,并达到了一个适度的结合亲和力上限,远远低于预期。实验数据已经开始揭示,免疫识别远远超出了受体与抗原的平衡结合;相反,细胞施加收缩力量,主动从抗原提呈细胞中提取抗原。PI假设,选择的明显无效不是由于不可避免的随机性造成的人工产物,而是抗原识别的非平衡性质的直接后果。她建议通过建立从分子识别到生物反应的映射来探索一种解释,这种映射通过细胞动力学和主动力量的使用来实现。该项目将侧重于:(A)确定细胞如何以及为什么在抗原识别过程中创建和维持多焦点接触模式;(B)检查在广泛的动态范围内实现亲和力辨别的抗原物理提取的能力;(C)确定信息界限并发现优化竞争功能的细胞策略。数学和计算模型将与体外和体内实验相结合,以阐明抗原识别的非平衡性和动态特征的功能后果,并了解细胞是否以及如何利用物理获得的信息来指导适应。虽然生物化学回路在实现免疫识别的显著特异性和敏感性方面的作用已经得到了广泛的探索,但这项关于天然环境中免疫细胞物理动力学的研究是对该领域大多数正在进行的工作的补充,并可能揭示细胞主动感知的意外功能目标。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Molecular Tug of War Reveals Adaptive Potential of an Immune Cell Repertoire
分子拉锯战揭示了免疫细胞库的适应潜力
- DOI:10.1103/physrevx.13.021022
- 发表时间:2023
- 期刊:
- 影响因子:12.5
- 作者:Jiang, Hongda;Wang, Shenshen
- 通讯作者:Wang, Shenshen
Multiple phase transitions shape biodiversity of a migrating population
多个相变塑造了迁徙人口的生物多样性
- DOI:10.1103/physreve.107.034405
- 发表时间:2023
- 期刊:
- 影响因子:2.4
- 作者:Barkan, Casey O.;Wang, Shenshen
- 通讯作者:Wang, Shenshen
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shenshen Wang其他文献
The Interplay of Nonlinearity and Architecture in Cytoskeletal Mechanics
- DOI:
10.1016/j.bpj.2010.12.1851 - 发表时间:
2011-02-02 - 期刊:
- 影响因子:
- 作者:
Shenshen Wang - 通讯作者:
Shenshen Wang
Flow boiling characteristics in a novel type of sinusoidal wavy microchannels with stepped expansion flow passages
- DOI:
10.1016/j.ijheatmasstransfer.2024.126308 - 发表时间:
2025-01-01 - 期刊:
- 影响因子:
- 作者:
Shenshen Wang;Guodong Xia;Lixin Cheng;Dandan Ma - 通讯作者:
Dandan Ma
Evolving generalists in switching rugged landscapes
不断发展的通才,改变崎岖的地形
- DOI:
10.1371/journal.pcbi.1007320 - 发表时间:
2019 - 期刊:
- 影响因子:4.3
- 作者:
Shenshen Wang;Lei Dai - 通讯作者:
Lei Dai
Active Forces on Cell-Cell Contacts Enable Efficient Immune Discrimination
- DOI:
10.1016/j.bpj.2019.11.1472 - 发表时间:
2020-02-07 - 期刊:
- 影响因子:
- 作者:
Shenshen Wang - 通讯作者:
Shenshen Wang
ESG and green Innovation
ESG与绿色创新
- DOI:
10.61173/v05bn030 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Shenshen Wang - 通讯作者:
Shenshen Wang
Shenshen Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shenshen Wang', 18)}}的其他基金
CAREER: Physical and Evolutionary Constraints on Adaptive Immunity
职业:适应性免疫的物理和进化限制
- 批准号:
2146581 - 财政年份:2022
- 资助金额:
$ 47.61万 - 项目类别:
Continuing Grant
相似国自然基金
Dynamic Credit Rating with Feedback Effects
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
含Re、Ru先进镍基单晶高温合金中TCP相成核—生长机理的原位动态研究
- 批准号:52301178
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
静动态损伤问题的基面力元法及其在再生混凝土材料细观损伤分析中的应用
- 批准号:11172015
- 批准年份:2011
- 资助金额:58.0 万元
- 项目类别:面上项目
基于贝叶斯网络可靠度演进模型的城市雨水管网整体优化设计理论研究
- 批准号:51008191
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
美洲大蠊药材养殖及加工过程中化学成分动态变化与生物活性的相关性研究
- 批准号:81060329
- 批准年份:2010
- 资助金额:26.0 万元
- 项目类别:地区科学基金项目
星系恒星与气体的动力学演化
- 批准号:11073025
- 批准年份:2010
- 资助金额:30.0 万元
- 项目类别:面上项目
非标准随机调度模型的最优动态策略
- 批准号:71071056
- 批准年份:2010
- 资助金额:28.0 万元
- 项目类别:面上项目
"锁住"的金属中心手性-手性笼络合物的动态CD光谱研究与应用开发
- 批准号:20973136
- 批准年份:2009
- 资助金额:34.0 万元
- 项目类别:面上项目
生物膜式反应器内复杂热物理参数动态场分布的多尺度实时测量方法研究
- 批准号:50876120
- 批准年份:2008
- 资助金额:36.0 万元
- 项目类别:面上项目
大规模动态网络环境中协同组操作一致性维护算法的正确性证明及其验证的研究
- 批准号:60803118
- 批准年份:2008
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Artificial Intelligence for Dynamic, individualized CPR guidance: AID CPR
人工智能提供动态、个性化的心肺复苏指导:AID CPR
- 批准号:
10644648 - 财政年份:2023
- 资助金额:
$ 47.61万 - 项目类别:
Multi-omic phenotyping of human transcriptional regulators
人类转录调节因子的多组学表型分析
- 批准号:
10733155 - 财政年份:2023
- 资助金额:
$ 47.61万 - 项目类别:
Decoding dynamic interplay between signaling and membranes in chemotaxis bymolecular actuators
通过分子致动器解码趋化中信号传导和膜之间的动态相互作用
- 批准号:
10846921 - 财政年份:2023
- 资助金额:
$ 47.61万 - 项目类别:
Dynamic Neural Computations Underlying Cognitive Control in Bulimia Nervosa
神经性贪食症认知控制下的动态神经计算
- 批准号:
10638708 - 财政年份:2023
- 资助金额:
$ 47.61万 - 项目类别:
Dynamic single-cell analysis instrument to evaluate immune cell function
动态单细胞分析仪评估免疫细胞功能
- 批准号:
10699036 - 财政年份:2023
- 资助金额:
$ 47.61万 - 项目类别:
Decoding dynamic interplay between signaling and membranes in chemotaxis by molecular actuators
通过分子致动器解码趋化中信号传导和膜之间的动态相互作用
- 批准号:
10623376 - 财政年份:2023
- 资助金额:
$ 47.61万 - 项目类别:
Dynamic prediction of type 1 diabetes risk and autoantibody status by a joint model of longitudinal and multistate models
通过纵向和多状态模型的联合模型动态预测1型糖尿病风险和自身抗体状态
- 批准号:
10630731 - 财政年份:2023
- 资助金额:
$ 47.61万 - 项目类别:
The C'RILLOS Project: Impact of Tobacco Regulatory Policy on Dynamic Use of Exclusive, Dual or Poly Cigar and Other Tobacco Product Use among Young Adults
CRILLOS 项目:烟草监管政策对年轻人动态使用单一雪茄、双雪茄或多聚雪茄和其他烟草产品的影响
- 批准号:
10666060 - 财政年份:2023
- 资助金额:
$ 47.61万 - 项目类别:
Mathematical modeling for optimal control of BK virus infection in kidney transplant recipients
肾移植受者 BK 病毒感染最佳控制的数学模型
- 批准号:
10741703 - 财政年份:2023
- 资助金额:
$ 47.61万 - 项目类别:
Brain-to-brain neurofeedback during naturalistic dynamic stimuli to reduce craving in heroin addiction
自然动态刺激期间的脑对脑神经反馈可减少海洛因成瘾的渴望
- 批准号:
10725836 - 财政年份:2023
- 资助金额:
$ 47.61万 - 项目类别: