QuSeC-TAQS: Distributed Entangled Quantum-Enhanced Interferometric Imaging for Telescopy and Metrology

QuSeC-TAQS:用于望远镜和计量的分布式纠缠量子增强干涉成像

基本信息

  • 批准号:
    2326803
  • 负责人:
  • 金额:
    $ 100万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

Improved resolution in astronomical observations at radio frequencies has enabled scientists to make the first images of black hole event horizons and detailed images of quasars, as demonstrated by the Event Horizon Telescope (EHT) collaboration, providing new insights into the structure and dynamics of some of the most puzzling objects in the universe. However, many features of astronomical objects can only be observed in the visible range of the electromagnetic spectrum. Improved resolution in the visible regime would accelerate the search for exoplanets and the study of their atmospheres, enable resolved imaging of black hole event horizons in the near-infrared, and facilitate imaging of planet-forming disks and stellar surfaces beyond the Sun. The fundamental limit to the resolution of a telescope is set by the ratio of the wavelength of electromagnetic radiation detected and the diameter of the collection aperture, thus driving efforts to make large aperture telescopes. By bringing together the fields collected at distant apertures and interfering them, one can increase the effective aperture size of a telescope to the distance between the apertures. The EHT utilized a network of radio telescopes across the Earth, with separations on the order of thousands of kilometers, currently infeasible for visible wavelengths. This project aims to develop extended baseline interferometry in visible wavelengths by performing the first quantum-enabled imaging of astronomical objects. The goal is to pioneer the development of practical astronomical interferometers with quantum-enhanced performance. Recent theoretical proposals have shown that by interfering collected light from astronomical sources with entangled states of light distributed between distant telescopes can enable effective aperture sizes not possible with classical means. Proof-of-concept experiments in this project will verify the basic operating principles of a quantum-enabled imaging system that can ultimately be scaled up to demonstrate a quantum advantage over conventional systems, providing valuable insights for a larger-scale implementation. Theoretical work in this project is focused on modeling realistic experiments, developing benchmarking tools and metrics for comparing quantum and classical sensing strategies, and extending quantum protocols. Tabletop experiments with simulated astronomical sources will be used to verify theoretical bounds of quantum and classical performance, and demonstrate the first quantum-enabled interferometric imaging of astronomical sources. This project brings together an interdisciplinary team of experts from astronomy, electrical engineering, physics and quantum information science who will work convergently to perform the first quantum-enabled imaging of astronomical objects. The largest payoff in the long term would be the development of practical astronomical interferometers with quantum-enhanced performance opening a new window on the observable universe. Shorter-term outcomes will be a deeper understanding of distributed quantum optical sensing, which may be applicable in diverse scenarios. Moreover, the methods developed during the project will be applicable to a broad range of applications beyond astronomy. For example, distributing entanglement between the telescope apertures is highly relevant to quantum networking, distributed quantum computing, and quantum communications. This project supports the training of students in a multidisciplinary collaboration, the expansion and development of courses in quantum information science, and public outreach activities to encourage young people and minorities to explore science and technology. This project is funded by the NSF Quantum Sensing Challenges for Transformative Advances in Quantum Systems (QuSeC-TAQS) program, the Division of Physics, and the Division of Astronomical Sciences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
正如事件视界望远镜(EHT)合作所证明的那样,无线电频率天文观测分辨率的提高使科学家能够拍摄出第一张黑洞事件视界图像和类星体的详细图像,为一些结构和动力学提供了新的见解宇宙中最令人困惑的物体。然而,天文物体的许多特征只能在电磁波谱的可见光范围内观察到。可见光区分辨率的提高将加速对系外行星的搜索及其大气层的研究,使近红外黑洞视界的分辨率成像成为可能,并促进太阳以外行星形成盘和恒星表面的成像。望远镜分辨率的基本限制是由探测到的电磁辐射的波长与收集孔径的直径之比决定的,因此推动了制造大孔径望远镜的努力。通过将在远距离孔径处收集的场聚集在一起并对其进行干涉,可以将望远镜的有效孔径尺寸增加到孔径之间的距离。EHT利用了一个遍布地球的射电望远镜网络,距离大约为数千公里,目前对可见光波段是不可行的。该项目旨在通过对天文物体进行第一次量子成像,发展可见波长的扩展基线干涉测量法。目标是率先开发具有量子增强性能的实用天文干涉仪。最近的理论建议表明,通过干扰来自天文源的收集光,使远距离望远镜之间分布的光的纠缠态能够实现经典手段不可能实现的有效孔径尺寸。该项目中的概念验证实验将验证量子成像系统的基本操作原理,该系统最终可以扩大规模,以证明量子优于传统系统,为更大规模的实施提供有价值的见解。该项目的理论工作重点是对现实实验进行建模,开发用于比较量子和经典传感策略的基准测试工具和指标,以及扩展量子协议。模拟天文源的桌面实验将用于验证量子和经典性能的理论界限,并演示天文源的首次量子干涉成像。该项目汇集了来自天文学,电气工程,物理学和量子信息科学的跨学科专家团队,他们将共同努力,对天文物体进行首次量子成像。从长远来看,最大的回报将是开发具有量子增强性能的实用天文干涉仪,为可观测的宇宙打开一扇新的窗口。短期成果将是对分布式量子光学传感的更深入理解,这可能适用于各种场景。此外,该项目期间开发的方法将适用于天文学以外的广泛应用。例如,望远镜孔径之间的分布纠缠与量子网络、分布式量子计算和量子通信高度相关。该项目支持对学生进行多学科合作培训,扩大和发展量子信息科学课程,并开展公共宣传活动,鼓励年轻人和少数民族探索科学和技术。 该项目由美国国家科学基金会量子系统变革性进展的量子传感挑战(QuSeC-TAQS)计划、物理学部和天文科学部资助。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brian Smith其他文献

Towards A Data Centric System Architecture: SHARP
迈向以数据为中心的系统架构:SHARP
Mental Illness Stigma in the Media
媒体对精神疾病的耻辱
Capture and visualization of live Mycobacterium tuberculosis bacilli from tuberculosis bioaerosols
从结核生物气溶胶中捕获活结核杆菌并进行可视化
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Dinkele;S. Gessner;A. Koch;C. Morrow;M. Gqada;M. Kamariza;C. Bertozzi;Brian Smith;Courtney McLoud;A. Kamholz;W. Bryden;C. Call;V. Mizrahi;R. Wood;D. Warner
  • 通讯作者:
    D. Warner
Using simulation to teach lean methodologies and the benefits for Millennials
使用模拟来教授精益方法以及对千禧一代的好处
Usage and usefulness of technical software documentation: An industrial case study
技术软件文档的用法和有用性:工业案例研究
  • DOI:
    10.1016/j.infsof.2014.08.003
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Golara Garousi;V. Garousi;G. Ruhe;Junji Zhi;M. Moussavi;Brian Smith
  • 通讯作者:
    Brian Smith

Brian Smith的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brian Smith', 18)}}的其他基金

CAREER: Making Digital Imagery Accessible to Blind and Low-Vision Users via Audiohaptic Dioramas
职业:通过视听立体模型让盲人和弱视用户可以访问数字图像
  • 批准号:
    2339788
  • 财政年份:
    2024
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
Multimode Continuous-Variable Quantum Optics for Precision Sensing
用于精密传感的多模连续可变量子光学器件
  • 批准号:
    2207767
  • 财政年份:
    2022
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
Reversible modification of methionine as a mechanism to regualte protein function in the mitochondrion and secretory pathway
蛋氨酸的可逆修饰作为调节线粒体和分泌途径中蛋白质功能的机制
  • 批准号:
    BB/V001183/1
  • 财政年份:
    2021
  • 资助金额:
    $ 100万
  • 项目类别:
    Research Grant
Temporal Multimode Transformations for Quantum Information Science
量子信息科学的时态多模变换
  • 批准号:
    2112900
  • 财政年份:
    2021
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
QuIC-TAQS: Implementation of a Neutral-Atom-Photonic-Cluster State
QuIC-TAQS:中性原子光子团簇态的实现
  • 批准号:
    2138068
  • 财政年份:
    2021
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
CRCNS US-France Research Proposal: Collaborative Research: Encoding reward expectation in Drosophilia
CRCNS 美国-法国研究提案:合作研究:编码果蝇奖励期望
  • 批准号:
    2113179
  • 财政年份:
    2021
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
Collaborative Research: All Birds: A Time-scaled Avian Tree From Integrated Phylogenomic and Fossil Data
合作研究:所有鸟类:来自综合系统基因组和化石数据的时间尺度鸟类树
  • 批准号:
    1655736
  • 财政年份:
    2017
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
Collaborative Research: Mapping and Tracking Conformational Control of Nitric Oxide Synthase Activation
合作研究:绘制和跟踪一氧化氮合酶激活的构象控制
  • 批准号:
    1708829
  • 财政年份:
    2017
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
Temporal-Spectral Multimode Photonics for Quantum Information Science
用于量子信息科学的时谱多模光子学
  • 批准号:
    1620822
  • 财政年份:
    2016
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
Ideas Lab Collaborative Research: Using Natural Odor Stimuli to Crack the Olfactory Code
创意实验室合作研究:利用自然气味刺激破解嗅觉密码
  • 批准号:
    1556337
  • 财政年份:
    2015
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant

相似国自然基金

北半球历史生物地理学问题探讨:基于RAD taqs方法的紫荆属亲缘地理学研究
  • 批准号:
    31470312
  • 批准年份:
    2014
  • 资助金额:
    85.0 万元
  • 项目类别:
    面上项目

相似海外基金

QuSeC-TAQS: Nanodiamond Quantum Sensing for Four-Dimensional Live-Cell Imaging
QuSeC-TAQS:用于四维活细胞成像的纳米金刚石量子传感
  • 批准号:
    2326628
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Sensing-Intelligence on The Move: Quantum-Enhanced Optical Diagnosis of Crop Diseases
QuSeC-TAQS:移动中的传感智能:农作物病害的量子增强光学诊断
  • 批准号:
    2326746
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
QuSeC-TAQS: Development of Quantum Sensors with Helium-4 using 2D Materials
QuSeC-TAQS:使用 2D 材料开发 Helium-4 量子传感器
  • 批准号:
    2326801
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Distributed Entanglement Quantum Sensing of Atmospheric and Aerosol Chemistries
QuSeC-TAQS:大气和气溶胶化学的分布式纠缠量子传感
  • 批准号:
    2326840
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
QuSeC-TAQS: Entanglement- Enhanced Multiphoton Fluorescence Imaging of in Vivo Neural Function
QuSeC-TAQS:体内神经功能的纠缠增强多光子荧光成像
  • 批准号:
    2326758
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Novel Quantum Algorithms for Optical Atomic Clocks
QuSeC-TAQS:用于光学原子钟的新型量子算法
  • 批准号:
    2326810
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Optically Hyperpolarized Quantum Sensors in Designer Molecular Assemblies
QuSeC-TAQS:设计分子组件中的光学超极化量子传感器
  • 批准号:
    2326838
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Driving Advances in Magnetic Materials and Devices with Quantum Sensing of Magnons
QuSeC-TAQS:利用磁振子量子传感推动磁性材料和器件的进步
  • 批准号:
    2326528
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
QuSeC-TAQS: Quantum Sensing Platform for Biomolecular Analytics
QuSeC-TAQS:用于生物分子分析的量子传感平台
  • 批准号:
    2326748
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Nanoscale Covariance Magnetometry with Diamond Quantum Sensors
QuSeC-TAQS:采用金刚石量子传感器的纳米级协方差磁力测量
  • 批准号:
    2326767
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了