Geometry from the viewpoint of quantization and duality

量子化和对偶性角度的几何

基本信息

  • 批准号:
    20K20877
  • 负责人:
  • 金额:
    $ 4.16万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
  • 财政年份:
    2020
  • 资助国家:
    日本
  • 起止时间:
    2020-07-30 至 2024-03-31
  • 项目状态:
    已结题

项目摘要

箙(quiver)とその変異(mutation)は,クラスター代数とともに,可積分系・低次元トポロジー・表現論・代数幾何学・WKB 解析などさまざまな分野に共通して現れる構造として注目を集めている.特に,箙の変異列 (mutation sequence) から系統的にゲージ理論や3次元双曲多様体を構成する方法が提唱され,その不変量を数学的に厳密に解析する手段の開発が必要となった.加藤は寺嶋郁二氏(東京工業大学)との共同研究において、与えられた箙変異の列 γ (quiver mutation loop = クラスター代数の exchange graph 上のループに相当)に対し、分配 q 級数 Z(γ) と呼ばれる母関数を定義したがこの考え方は、quiver mutation loop のような周期境界条件ではなく、初期条件のみを指定した有限区間 (quiver mutation sequence) に対しても適用可能である。この場合は終状態に対する自由端条件を表すために、 c-vector で次数付けされた非可換トーラスに値を持つ関数として考えるのが自然である。加藤は、寺嶋郁二氏と水野勇磨氏(ともに東京工業大学)との共同研究において、Boltzmann weight を q 二項係数とする分配関数(partition function)を導入し、その性質を調べた。この分配関数は、実は引数の異なる2つの分配 q 級数の比として書けることが証明できる。その結果、分配関数もまた分配 q 級数が持つ様々な良い性質を引き継いでいる。たとえば、 q 二項係数が満たす Stanley の関係式は、分配 q 級数がペンタゴン関係式を満たすことの帰結として導くことができる。
The theory of algebra (mutation) can be divided into lower-dimensional systems. Table theory. How to learn from WKB? The method of analyzing the secret of mathematics is to open up the necessary information. Kato Takashi Yuji (Beijing University of Technology) jointly studied the number of mothers, the number of distributions Q, the number Z (γ), the number of mothers, the number of mothers, and the definition of the number of mothers. The quiver mutation loop cycle boundary conditions are sensitive, and the initial condition conditions specify the availability of limited area (quiver mutation sequence) cycles. In the form of free-end conditions, the number of times is not available, the number of times is not available, and the number of times is high. Mr. Kato and Mr. Yuji Mizuno (Beijing University of Technology) work together to study the distribution of two numbers (partition function) and sex distribution (partition function) of the two numbers, I. E., the number of dollars, the number of people, and the number of people. The number of assigned numbers, arguments, 2 numbers of assigned Q numbers is better than the number of assigned numbers. The results, distribution, distribution and distribution. There are two numbers, one is the number of Stanley, the other is the formula of the distribution of the two figures.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

加藤 晃史其他文献

第 1・2 世代 EGFR-TKI およびプラチナ PD(T790M 陰性)を示した EGFR 陽性 NSCLC に 対するオシメルチニブの第 2 相試験
奥希替尼治疗 EGFR 阳性 NSCLC 的 2 期研究,采用第一代和第二代 EGFR-TKI 和铂类 PD(T790M 阴性)
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    武田 真幸;下川 元継;中村 敦;野崎 要;渡辺 恭孝;加藤 晃史;早川 乃介;田中 洋史;高橋 利明;立原 素子;林 秀敏;藤本 大智;山口 覚博;山本 将一朗;岩間 映二;東 公一;沖 昌英;長谷川 一男;山本 信之;中川 和彦
  • 通讯作者:
    中川 和彦
HIDESファイバー・フィード化計画
HIDES 纤维饲喂计划
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    大宮正士;他;加藤 晃史;神戸栄治
  • 通讯作者:
    神戸栄治
岡山天体物理観測所の現状とその将来
冈山天体物理观测站的现状与未来
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    大宮正士;他;加藤 晃史;神戸栄治;加藤 晃史;吉田道利
  • 通讯作者:
    吉田道利

加藤 晃史的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('加藤 晃史', 18)}}的其他基金

場の量子論における繰り込みと弦理論の双対性
量子场论中重整化与弦论的对偶性
  • 批准号:
    17654011
  • 财政年份:
    2005
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Grant-in-Aid for Exploratory Research
弦理論における双対性とその代数的構造
弦论中的对偶性及其代数结构
  • 批准号:
    11740140
  • 财政年份:
    1999
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
場の理論の双対性と無限次元対称性
场论中的对偶性和无限维对称性
  • 批准号:
    08740191
  • 财政年份:
    1996
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
低次元強相関電子系の量子群対称性による解析
使用量子群对称性分析低维强相关电子系统
  • 批准号:
    07210221
  • 财政年份:
    1995
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
無限次元対称性を用いた自己組織化臨界現象の研究
利用无限维对称性研究自组织临界现象
  • 批准号:
    06854011
  • 财政年份:
    1994
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
自己組織化臨界系のダイナミクスと共形場理論
自组织临界系统动力学和共形场论
  • 批准号:
    05854014
  • 财政年份:
    1993
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
共形場理論の可積分変形にともなう代教的構造
与共形场理论可积变形相关的合成结构
  • 批准号:
    04245206
  • 财政年份:
    1992
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
乱れた系のダイナミクスへの代数的アプローチ
无序系统动力学的代数方法
  • 批准号:
    04854013
  • 财政年份:
    1992
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
超弦理論のコンパクトの代数的手法による研究
弦理论中紧代数方法的研究
  • 批准号:
    02740138
  • 财政年份:
    1990
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
超弦理論のコンパクト化のメカニズム
弦理论的紧化机制
  • 批准号:
    01790189
  • 财政年份:
    1989
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)

相似海外基金

HSP40-変異p53相互作用から考えるがん治療抵抗性機構の解明と新規増感戦略の創出
基于HSP40突变的p53相互作用阐明癌症治疗耐药机制并创建新的致敏策略
  • 批准号:
    24K13149
  • 财政年份:
    2024
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
FGFR3変異膀胱癌におけるPPARγシグナルの解明と新規治療法の開発
阐明 FGFR3 突变膀胱癌中的 PPARγ 信号并开发新的治疗方法
  • 批准号:
    24K12519
  • 财政年份:
    2024
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
リンパ節ネットワーク構造における異所的な変異株ブースターに対する抗体応答の解析
淋巴结网络结构中异位突变助推器的抗体反应分析
  • 批准号:
    24K11666
  • 财政年份:
    2024
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
人為突然変異とゲノム情報を利用したイネ雑種弱勢原因遺伝子の単離
利用人工突变和基因组信息分离导致水稻杂交弱点的基因
  • 批准号:
    24K08849
  • 财政年份:
    2024
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
マラリア原虫のフェレドキシンの変異が薬剤耐性をもたらす機序の解明
阐明疟疾寄生虫中铁氧还蛋白突变导致耐药性的机制
  • 批准号:
    24K09380
  • 财政年份:
    2024
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
変異酵素の立体構造を化学的に操作できるシャペロン化合物の合理的設計と機能解析
化学操纵突变酶三维结构的伴侣化合物的合理设计和功能分析
  • 批准号:
    24K09706
  • 财政年份:
    2024
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
ASXL1遺伝子変異によるクローン性造血が大動脈瘤を増悪させる分子機序の解明
ASXL1基因突变引起的克隆性造血加重主动脉瘤的分子机制的阐明
  • 批准号:
    24KJ0582
  • 财政年份:
    2024
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
変異を有する前頭側頭葉変性症の多層的神経病理研究
额颞叶变性突变的多层神经病理学研究
  • 批准号:
    24K10695
  • 财政年份:
    2024
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
核医学レポーター蛋白の変異特性を利用した生体移植後細胞のモニタリング法の開発
利用核医学报告蛋白的突变特征开发监测活体移植后细胞的方法
  • 批准号:
    24K10837
  • 财政年份:
    2024
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
ゼブラフィッシュatp6v1ba遺伝子変異による耳石形成障害と難聴の機序解明
阐明斑马鱼atp6v1ba基因突变导致耳石形成障碍和听力损失的机制
  • 批准号:
    24K10932
  • 财政年份:
    2024
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了