Nonlinear partial differential equations on sub-Riemannian manifolds based on viscosity solution theory
基于粘性解理论的亚黎曼流形非线性偏微分方程
基本信息
- 批准号:19K03574
- 负责人:
- 金额:$ 2.75万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2019
- 资助国家:日本
- 起止时间:2019-04-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
主にサブリーマン多様体における準凸関数の性質と非線形偏微分方程式への応用について研究した.既に本研究でハイゼンベルグ群上の準凸関数と一階非局所的ハミルトン・ヤコビ方程式の関係が明らかになり,それに関する論文が国際ジャーナルRev. Mat. Iberoam. に掲載された.2022年度ではそれに続き,曲率タイプの二階楕円型作用素による準凸関数の特徴づけを考察し,方程式の粘性劣解の形で準凸関数になるための必要条件と十分条件を導いた.従来の結果よりも,より一般的な函数クラスでハイゼンベルグ群上の準凸関数と二階非線形楕円型方程式との関係を明らかにし,理解を深めることができた.さらに,この結果を用い,未解決問題であるハイゼンベルグ群上の曲率流の凸保存性についても研究を行った.初期値の幾何学的構造に対する一定の仮定の下で部分的な結果を得られた.これらの成果をまとめた論文が現在投稿準備中である.関連の課題として,ユークリッド空間における非局所完全非線形放物型方程式の粘性解の準凸保存性も研究し,先行研究の結果を改良できた.冪凸函数による近似を新しい解析の手法として採用し,従来の研究で扱う方程式よりも一般的な非局所方程式について,解の準凸保存定理を確立することができた.この研究結果をまとめた論文が国際ジャーナルNonlinear Differential Equations Appl. に掲載された.
A Study on the Properties of Quasi-convex Numbers and the Application of Nonlinear Partial Differential Equations. In this paper, the relationship between quasi-convex relations and first-order non-local equations on the group of equations is studied. Mat. Iberoam. It is disclosed in. In 2022, we will examine the characteristics of the quasi-convex correlation for the second-order flap-type actor of curvature, and derive the necessary and tenth conditions for the quasi-convex correlation for the form of the viscous inferior solution of the equation. The result of this paper is that the quasi-convex relation number on the group of general functions and the relationship between the second-order nonlinear equations are clearly understood. In this paper, the results are used to solve the unsolved problem of curvature flow and convex preservation on the group. The structure of initial geometry is related to certain conditions and the results of lower part are obtained. The results of this paper are now being prepared. Related topics: Quasi-convex preservation of viscosity solutions for non-local complete nonlinear equations in complex spaces; improvement of the results of previous studies. A new analytic approach to the approximation of power convex functions is proposed, and the quasi-convex preservation theorem of solutions is established. The results of this study are published in the paper International Journal of Nonlinear Differential Equations Appl.
项目成果
期刊论文数量(32)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Principal eigenvalue problem for infinity Laplacian in metric spaces
度量空间中无穷拉普拉斯算子的主特征值问题
- DOI:10.1515/ans-2022-0028
- 发表时间:2022
- 期刊:
- 影响因子:1.8
- 作者:中島俊;Matsumoto Yuya;Qing Liu and Ayato Mitsuishi
- 通讯作者:Qing Liu and Ayato Mitsuishi
Equivalence of solutions of eikonal equation on metric spaces
度量空间上的程函方程解的等价性
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Kazuhiro Ishige;Qing Liu;Paolo Salani;Qing Liu;柳青;柳青;柳青;Qing Liu;Qing Liu;Qing Liu;柳青;柳 青;柳 青
- 通讯作者:柳 青
Large exponent behavior for power-type nonlinear evolution equations and applications
功率型非线性演化方程的大指数行为及应用
- DOI:10.1007/s00028-019-00539-z
- 发表时间:2020
- 期刊:
- 影响因子:1.4
- 作者:Surendra Nepal;Robert Meyer;Nils Hendrik Kroger;Toyohiko Aiki;Adrian Muntean;Yosief Wondmagegne;Ulrich Giese;Qing Liu
- 通讯作者:Qing Liu
Viscosity solution approach to asymptotic problems in front propagation, dynamical system and related topics
前向传播、动力系统及相关主题中渐近问题的粘度求解方法
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
A deterministic game interpretation for fully nonlinear parabolic equations with dynamic boundary conditions
- DOI:10.1051/cocv/2019076
- 发表时间:2019-03
- 期刊:
- 影响因子:0
- 作者:N. Hamamuki;Qing Liu
- 通讯作者:N. Hamamuki;Qing Liu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
柳 青其他文献
Vanishing exponent behavior of power mean curvature ow and applications
幂均曲率流的消失指数行为及其应用
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
相原 研輔;今倉 暁;保國 惠一;柳 青 - 通讯作者:
柳 青
腸内細菌代謝物”酪酸”のHDACを介した心肥大抑制作用機構
肠道细菌代谢产物“丁酸”介导的HDAC介导的心脏肥大抑制作用机制
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
梅井 正彦;赤澤 宏;嵯峨 亜希子;八木 宏樹;柳 青; 門脇 裕;松岡 良;野村 征太郎;小室 一成 - 通讯作者:
小室 一成
On principles between Σ1- and Σ2-induction, and monotone enumerations
关于 Σ1 和 Σ2 归纳以及单调枚举之间的原理
- DOI:
10.1142/s0219061316500045 - 发表时间:
2016 - 期刊:
- 影响因子:0.9
- 作者:
相原 研輔;今倉 暁;保國 惠一;柳 青;Alexander P. Kreuzer and Keita Yokoyama - 通讯作者:
Alexander P. Kreuzer and Keita Yokoyama
Formation mechanism of the basin of attraction of bipedal walking models
双足行走模型吸引力盆的形成机制
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Matsue Kaname;Matsuoka Leo;Ogurisu Osamu;Segawa Etsuo;柳 青;Masahiko Shimojo;Ippei Obayashi - 通讯作者:
Ippei Obayashi
Reverse mathematical bounds for the Termination Theorem
终止定理的逆数学界限
- DOI:
10.1016/j.apal.2016.06.001 - 发表时间:
2016 - 期刊:
- 影响因子:0.8
- 作者:
Matsue Kaname;Matsuoka Leo;Ogurisu Osamu;Segawa Etsuo;柳 青;Masahiko Shimojo;Ippei Obayashi;Silvia Steila and Keita Yokoyama - 通讯作者:
Silvia Steila and Keita Yokoyama
柳 青的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('柳 青', 18)}}的其他基金
Nonlinear Partial Differential Equations on Metric Spaces
度量空间上的非线性偏微分方程
- 批准号:
22K03396 - 财政年份:2022
- 资助金额:
$ 2.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
決定論的ビリヤード微分ゲームと放物型境界値問題
确定性台球微分博弈与抛物线边值问题
- 批准号:
09J07428 - 财政年份:2009
- 资助金额:
$ 2.75万 - 项目类别:
Grant-in-Aid for JSPS Fellows
相似国自然基金
Hamilton-Jacobi方程粘性解在扰动下的收敛性
- 批准号:12301228
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Hamilton-Jacobi方程粘性解的稳定性及相关问题
- 批准号:12301233
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
切触哈密顿-雅可比方程的粘性解研究
- 批准号:22ZR1433100
- 批准年份:2022
- 资助金额:0.0 万元
- 项目类别:省市级项目
随机微分方程与偏微分方程粘性解的随机表达
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
完全非线性随机偏微分方程的随机粘性解
- 批准号:12271103
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
关于接触Hamilton-Jacobi方程粘性解的奇性传播
- 批准号:11801223
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
接触Hamilton系统与一类偏微分方程粘性解的奇性传播
- 批准号:11771283
- 批准年份:2017
- 资助金额:48.0 万元
- 项目类别:面上项目
正倒向随机微分方程次优控制粘性解方法之研究
- 批准号:11701040
- 批准年份:2017
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
discounted Hamilton-Jacobi 方程粘性解收敛性的研究
- 批准号:11726602
- 批准年份:2017
- 资助金额:10.0 万元
- 项目类别:数学天元基金项目
基于粘性解的随机时滞方程最优控制问题研究
- 批准号:11401474
- 批准年份:2014
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
粘性解を用いたJ方程式の弱解理論の構築および非一様J安定な多様体への応用
使用粘性解构建 J 方程弱理论及其在非均匀 J 稳定流形中的应用
- 批准号:
24KJ0346 - 财政年份:2024
- 资助金额:
$ 2.75万 - 项目类别:
Grant-in-Aid for JSPS Fellows
完全非線形方程式の粘性解の正則性理論とその応用
完全非线性方程粘性解的正则理论及其应用
- 批准号:
23K20224 - 财政年份:2024
- 资助金额:
$ 2.75万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
完全非線形微分積分方程式における粘性解の正則性
全非线性微分和积分方程中粘性解的正则性
- 批准号:
21J10020 - 财政年份:2021
- 资助金额:
$ 2.75万 - 项目类别:
Grant-in-Aid for JSPS Fellows
完全非線形放物型方程式の粘性解理論の深化
深化全非线性抛物型方程的粘度解理论
- 批准号:
20J00314 - 财政年份:2020
- 资助金额:
$ 2.75万 - 项目类别:
Grant-in-Aid for JSPS Fellows
完全非線形放物型方程式の粘性解理論の新展開
全非线性抛物型方程粘度解理论的新进展
- 批准号:
20K14340 - 财政年份:2020
- 资助金额:
$ 2.75万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
距離空間上の粘性解の基礎と応用
度量空间上粘度解的基础和应用
- 批准号:
19K14566 - 财政年份:2019
- 资助金额:
$ 2.75万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
均質化問題と分数冪時間微分を持つ方程式の粘性解理論
具有均质化问题和分数幂时间导数的方程的粘性解理论
- 批准号:
16J03422 - 财政年份:2016
- 资助金额:
$ 2.75万 - 项目类别:
Grant-in-Aid for JSPS Fellows
完全非線形放物型方程式の粘性解理論
全非线性抛物型方程的粘性解理论
- 批准号:
16J02399 - 财政年份:2016
- 资助金额:
$ 2.75万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Nonlinear dynamics and pattern formation in crystal growth from a highly viscous solution film
高粘性溶液膜晶体生长的非线性动力学和图案形成
- 批准号:
26400407 - 财政年份:2014
- 资助金额:
$ 2.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
粘性解理論とその材料科学分野への応用
粘性溶液理论及其在材料科学领域的应用
- 批准号:
14J30001 - 财政年份:2014
- 资助金额:
$ 2.75万 - 项目类别:
Grant-in-Aid for JSPS Fellows














{{item.name}}会员




