Mathematical modeling for glucose concentration in blood based on inverse problem analysis of fractional differential equations

基于分数阶微分方程反问题分析的血液葡萄糖浓度数学模型

基本信息

  • 批准号:
    16K13774
  • 负责人:
  • 金额:
    $ 2.25万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
  • 财政年份:
    2016
  • 资助国家:
    日本
  • 起止时间:
    2016-04-01 至 2019-03-31
  • 项目状态:
    已结题

项目摘要

项目成果

期刊论文数量(21)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Diffused Optical Tomography as an Inverse Problem for the Transport Equation
扩散光学层析成像作为传输方程的反问题
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Iwamoto;W. Saso;R. Sugiyama;K. Ishii;M. Ohki;S. Nagamori;R. Suzuki;H. Aizaki;A. Ryo;J-H Yun;S-Y Park;N. Ohtani;M. Muramatsu;S. Iwami;Y. Tanaka;C. Sureau;T. Wakita and K. Watashi;磯 祐介
  • 通讯作者:
    磯 祐介
Multiple-Precision Arithmetic Environment in MATLAB and Its Application to Reliable Computation of Fractional Order Derivatives
MATLAB多精度运算环境及其在分数阶导数可靠计算中的应用
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Higashimori Nobuyuki;Fujiwara Hiroshi;Iso Yuusuke;高柳雅俊,鈴木智博;Hiroshi Fujiwara
  • 通讯作者:
    Hiroshi Fujiwara
多倍長計算環境exflibの最新計算環境への対応と普及
多精度计算环境 exflib 与最新计算环境的兼容性和传播
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    松田康弘;中村大輔;池田暁彦;嶽山正二郎;村岡祐治;壽賀友貴;藤原宏志
  • 通讯作者:
    藤原宏志
Numerical challenges to the radiative transport equation for near-infrared light propagation in tissue
近红外光在组织中传播的辐射传输方程的数值挑战
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    H. Fujiwara
  • 通讯作者:
    H. Fujiwara
ソウル大学校自然科学大学数理科学部(韓国)
首尔国立大学自然科学学院数学科学系(韩国)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ISO Yuusuke其他文献

High-Precision Numerical Computation of Integral Equation of the First Kind
第一类积分方程的高精度数值计算
New Multiple-Precision Arithmetic Environment and its Application fo Numerical Computation
新型多精度运算环境及其在数值计算中的应用

ISO Yuusuke的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ISO Yuusuke', 18)}}的其他基金

Proposal of a new governing equation of crack propagation caused by change of temperature and its analysis
温度变化引起裂纹扩展的新控制方程的提出及其分析
  • 批准号:
    25610031
  • 财政年份:
    2013
  • 资助金额:
    $ 2.25万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Estimation of modeling errors and their regularization in applied inverse problems
应用反问题中建模误差的估计及其正则化
  • 批准号:
    23654034
  • 财政年份:
    2011
  • 资助金额:
    $ 2.25万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Breakthrough in numerical analysis and numerical computation related with infinitely-precision arithmetic
无限精度算术相关数值分析和数值计算的突破
  • 批准号:
    22340018
  • 财政年份:
    2010
  • 资助金额:
    $ 2.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Foundation of high accuracy computational methods on the multiple-precision computer environment and its applications to analysi of inverse problems
多精度计算机环境下高精度计算方法的建立及其在反问题分析中的应用
  • 批准号:
    19340022
  • 财政年份:
    2007
  • 资助金额:
    $ 2.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Establishment of New Numerical Methods for Applied Inverse and Ill-Posed Problems
应用逆问题和不适定问题的新数值方法的建立
  • 批准号:
    16340024
  • 财政年份:
    2004
  • 资助金额:
    $ 2.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Numerical and Mathematical Analysis for the reconstruction for solutions of inverse and ill-posed problems by regularization methods
通过正则化方法重构逆问题和病态问题解的数值和数学分析
  • 批准号:
    13440031
  • 财政年份:
    2001
  • 资助金额:
    $ 2.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Mathematical Study of the Boundary Element Method and its Application to Inverse
边界元法的数学研究及其在反演中的应用
  • 批准号:
    10490018
  • 财政年份:
    1998
  • 资助金额:
    $ 2.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Numerical Analysis for Ill-posed Problems Related with Engineering
工程不适定问题的数值分析
  • 批准号:
    07309021
  • 财政年份:
    1995
  • 资助金额:
    $ 2.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了