Numerical Analysis for Ill-posed Problems Related with Engineering
工程不适定问题的数值分析
基本信息
- 批准号:07309021
- 负责人:
- 金额:$ 1.54万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:1995
- 资助国家:日本
- 起止时间:1995 至 1997
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We treat mainly, in the present research, inverse problems as our aimed ill-posed problems. We mean "ill-posed problems" by the not well-posed problems in the sense of Hadamard ; the aimed differential equations are not well-posed in the sense of Hadamard and solutions have almost no continuity in connection with the given data. The ill-posedness implies instability of numerical solutions in numerical analysis for our problems, and it means impossibility of reliable numerical computation by usual numerical methods applied to the problems.Inverse Problems , e. g. non-destructive test, are popular in the recent engineering, but almost all of them are ill-posed in the above sense. It is almost impossible to give good numerical solutions for the problem by usual numerical techniques, and we need some new idea to treat them. We give some results from this view point in the present research.Under the circumastance stated above, we restrict ourselves for theoretical approach for numerical analysis for ill-posed problems. Dr. Masahiro Yamamoto, who is one of the investigators of our research, proposed generalized well-posedness for ill-posed problems, and he shows the uniqueness of the solution for an aimed problem implies its stability from the functional analysis. It means stability of numerical solution in a weak sense, and we put the research of uniqueness in inverse problems as one of the main topics in the research. Dr.Masahiro Kubo gives a very important result for the uniqueness in the hyperbolic inverse problems. In addition. to the uniqueness, other investigators of the present research study application of Tikhonov regularization methods, the filter methods proposed by Dr.Tosaka and multi-precision techniques proposed 5y Dr.Iso, and each method is regarded as a suitable new method in numerical analysis for ill-posed problems.
在目前的研究中,我们主要把反问题作为我们的目标不适定问题。所谓“不适定问题”,是指Hadamard意义下的不适定问题;所研究的微分方程是Hadamard意义下的不适定问题,其解对于给定的数据几乎没有连续性。在数值分析中,这种不适定性意味着数值解的不稳定性,也意味着用常规的数值方法进行可靠的数值计算是不可能的。G.非破坏性检测等方法是近年来工程中比较流行的方法,但它们几乎都是上述意义下的不适定问题。用通常的数值方法几乎不可能给出很好的数值解,我们需要一些新的思想来处理它们。本文从这一观点出发,给出了一些结果,在上述情况下,我们仅限于对不适定问题进行数值分析的理论方法。Masahiro Yamamoto博士是我们研究的研究者之一,他提出了不适定问题的广义适定性,并从泛函分析中证明了目标问题解的唯一性意味着其稳定性。它是指数值解在弱意义下的稳定性,我们把反问题的唯一性研究作为研究的主要内容之一。久保昌弘博士对双曲型反问题的唯一性给出了一个非常重要的结果.另外。针对这一唯一性,本文研究了Tikhonov正则化方法、Toxie博士提出的滤波方法和Iso博士提出的多精度技术的应用,每种方法都被认为是不适定问题数值分析中一种合适的新方法。
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Naoshi Nishimura: "Crack Determination Problems" Theoretical and Applied Mechanics. 46. 39-57 (1997)
Naoshi Nishimura:“裂纹确定问题”理论与应用力学。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
大西和榮: "On identifying Dirichlet condition for 2D Laplace equation by BEM" Engineering Analysis with Boundary Elements. 17. 223-230 (1996)
Kazue Onishi:“通过 BEM 识别二维拉普拉斯方程的狄利克雷条件”《边界元工程分析》17. 223-230 (1996)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
大西和榮: "On identifying Dirichlet condition for 2D Laplace equation by BEM" Engineering Analysis with Boundary Elements. 17. 223-230 (1997)
Kazue Onishi:“通过 BEM 识别二维拉普拉斯方程的狄利克雷条件”《边界元工程分析》17. 223-230 (1997)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Kazuei Onishi et al.: "Numerical impedance computed tomography" Theoretical and Applied Mechanics. 46. (1997)
Kazuei Onishi 等人:“数值阻抗计算机断层扫描”理论与应用力学。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
久保司郎 他: "ラプラス場における境界値逆問題の数値解析の数理的構造解明と適切化" 日本機械学会論文集(A編). 61. 169-176 (1995)
Shiro Kubo 等:“拉普拉斯域中边值反问题数值分析的数学结构阐明和优化”日本机械工程学会会刊(A 版)61. 169-176 (1995)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ISO Yuusuke其他文献
High-Precision Numerical Computation of Integral Equation of the First Kind
第一类积分方程的高精度数值计算
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
FUJIWARA Hiroshi;IMAI Hitoshi;TAKEUCHI Toshiki;ISO Yuusuke - 通讯作者:
ISO Yuusuke
New Multiple-Precision Arithmetic Environment and its Application fo Numerical Computation
新型多精度运算环境及其在数值计算中的应用
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
FUJIWARA Hiroshi;ISO Yuusuke - 通讯作者:
ISO Yuusuke
ISO Yuusuke的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ISO Yuusuke', 18)}}的其他基金
Mathematical modeling for glucose concentration in blood based on inverse problem analysis of fractional differential equations
基于分数阶微分方程反问题分析的血液葡萄糖浓度数学模型
- 批准号:
16K13774 - 财政年份:2016
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Proposal of a new governing equation of crack propagation caused by change of temperature and its analysis
温度变化引起裂纹扩展的新控制方程的提出及其分析
- 批准号:
25610031 - 财政年份:2013
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Estimation of modeling errors and their regularization in applied inverse problems
应用反问题中建模误差的估计及其正则化
- 批准号:
23654034 - 财政年份:2011
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Breakthrough in numerical analysis and numerical computation related with infinitely-precision arithmetic
无限精度算术相关数值分析和数值计算的突破
- 批准号:
22340018 - 财政年份:2010
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Foundation of high accuracy computational methods on the multiple-precision computer environment and its applications to analysi of inverse problems
多精度计算机环境下高精度计算方法的建立及其在反问题分析中的应用
- 批准号:
19340022 - 财政年份:2007
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Establishment of New Numerical Methods for Applied Inverse and Ill-Posed Problems
应用逆问题和不适定问题的新数值方法的建立
- 批准号:
16340024 - 财政年份:2004
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Numerical and Mathematical Analysis for the reconstruction for solutions of inverse and ill-posed problems by regularization methods
通过正则化方法重构逆问题和病态问题解的数值和数学分析
- 批准号:
13440031 - 财政年份:2001
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Mathematical Study of the Boundary Element Method and its Application to Inverse
边界元法的数学研究及其在反演中的应用
- 批准号:
10490018 - 财政年份:1998
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
相似海外基金
Simultaneous Estimation of Noise Level and Solution Smoothness for Ill-Posed Problems
同时估计不适定问题的噪声水平和解决方案平滑度
- 批准号:
416552794 - 财政年份:2019
- 资助金额:
$ 1.54万 - 项目类别:
Research Grants
Approximate Singular Value Expansions and Solutions of Ill-Posed Problems
近似奇异值展开及不适定问题的解
- 批准号:
1913136 - 财政年份:2019
- 资助金额:
$ 1.54万 - 项目类别:
Standard Grant
Continuous Regularization for Nonlinear Ill-Posed Problems
非线性不适定问题的连续正则化
- 批准号:
1112897 - 财政年份:2011
- 资助金额:
$ 1.54万 - 项目类别:
Standard Grant
Regularization of nonlinear ill-posed problems in Banach spaces and conditional stability
Banach空间中非线性不适定问题的正则化和条件稳定性
- 批准号:
190672901 - 财政年份:2011
- 资助金额:
$ 1.54万 - 项目类别:
Research Grants
Development of highly accurate numerical method based on finite differences and its application to ill-posed problems of partial differential equations.
基于有限差分的高精度数值方法的发展及其在偏微分方程不适定问题中的应用。
- 批准号:
18540108 - 财政年份:2006
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Establishment of New Numerical Methods for Applied Inverse and Ill-Posed Problems
应用逆问题和不适定问题的新数值方法的建立
- 批准号:
16340024 - 财政年份:2004
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Theoretical and Numerical Investigation of Dynamical Systems Method for Solving Linear and Nonlinear Ill-Posed Problems
解决线性和非线性不适定问题的动力系统方法的理论和数值研究
- 批准号:
0207050 - 财政年份:2002
- 资助金额:
$ 1.54万 - 项目类别:
Standard Grant
Numerical and Mathematical Analysis for the reconstruction for solutions of inverse and ill-posed problems by regularization methods
通过正则化方法重构逆问题和病态问题解的数值和数学分析
- 批准号:
13440031 - 财政年份:2001
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Numerical Methods for Ill-Posed Problems and Markov Chains
不适定问题和马尔可夫链的数值方法
- 批准号:
9503126 - 财政年份:1995
- 资助金额:
$ 1.54万 - 项目类别:
Continuing Grant
Mathematical Sciences: Career Advancement Award: Ill-Posed Problems
数学科学:职业发展奖:不适定问题
- 批准号:
9308121 - 财政年份:1993
- 资助金额:
$ 1.54万 - 项目类别:
Standard Grant