Mathematical Study of the Boundary Element Method and its Application to Inverse
边界元法的数学研究及其在反演中的应用
基本信息
- 批准号:10490018
- 负责人:
- 金额:$ 7.74万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:1998
- 资助国家:日本
- 起止时间:1998 至 1999
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We deal with mathematical study of convergence and stability for the boundary element method (BEM) as a solver for elliptic boundary value problems. We also give numerical study for our problems, and we develop the computational environment of multiprecision system in the present research.According to the traditional study for the boundary element method and the boundary integral equation method, we have focused estimation on boundaries in the study of the convergence, but we pointed out the lack of the traditional studies and focused importance of estimation for numerical solution over domains in the first step. We show high accuracy of numerical solutions over domain by BEM, and we clarify one of the merits of BEM in the research. We can observe accurate uniform convergence of numerical solution on a compact set in the domain, and convergence rate in the domain is higher than that on the boundary for smooth data. We also observe, and uniform convergence of numerical solution on a compact set even when numerical solution do not converge uniformly on the boundary. The merit takes advantage in the numerical study for ill-posed problems connected with elliptic partial differential equations.The research has been carried out separately by each investigator under the control of the head investigator. The head investigator and his research group study numerical experiments of BEM applied to typical elliptic boundary value problems to show high accuracy phenomena of BEM. And they also develop very fast multiprecision system in the present research. The other investigators deal mainly with BEM and others mainly study inverse problems. The multiprecision system developed can be applicable powerfully in the vast fields of numerical analysis.
本文研究了边界元法求解椭圆边值问题的收敛性和稳定性。本文还对问题进行了数值研究,发展了多精度系统的计算环境,在传统的边界元法和边界积分方程法研究的基础上,我们在收敛性研究中着重于边界估计,但首先指出了传统研究的不足,并着重指出了区域上数值解估计的重要性。通过对边界元法在区域上数值解的高精度分析,阐明了边界元法在研究中的优点之一。我们可以观察到数值解在区域内的紧集上的精确一致收敛,并且对于光滑数据,区域内的收敛速度比边界上的收敛速度快。我们还观察到,即使数值解在边界上不一致收敛,数值解在紧集上也一致收敛。其优点是在椭圆型偏微分方程不适定问题的数值研究中发挥了优势,研究工作在首席研究员的领导下由每个研究员单独进行。本课题组主要研究边界元法应用于典型椭圆边值问题的数值实验,以展示边界元法的高精度现象。在目前的研究中,他们还开发了非常快速的多精度系统。其他研究者主要研究边界元法,其他研究者主要研究反问题。所开发的多精度系统可在数值分析的广阔领域中得到有力的应用。
项目成果
期刊论文数量(20)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
大西 和榮: "「An approximate variational method for the Cauchy problem in plane elastostatics」" Theoretical and Applied Mechanics. 47. 341-347 (1998)
Kazuei Onishi:“平面弹性静力学中柯西问题的近似变分方法”理论与应用力学 47. 341-347 (1998)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Y.Ohura, K.Kobayashi, K, Onishi: "Numerical solution of an under-deteremined problem of the Laplace equation"Journal of Applied Mechanics, JSCE. 2. 185-189 (1999)
Y.Ohura、K.Kobayashi、K、Onishi:“拉普拉斯方程欠定问题的数值解”应用力学杂志,JSCE。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Krishna M.Singh, Masataka Tanaka: "Dual reciprocity boundary element analysis of nonlinear diffusion : temporal discretization"Engineering Analysis with Boundary Elements. 23. 419-433 (1999)
Krishna M.Singh、Masataka Tanaka:“非线性扩散的双互易边界元分析:时间离散化”边界元工程分析。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
久保 司郎: "「A Mathematical and Numerical Study on Regularization of an Inverse Boundary Value」" Inverse Problems in Engineering Mechanics. 337-344 (1998)
Shiro Kubo:“‘逆边界值正则化的数学和数值研究’”工程力学逆问题337-344 (1998)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
岩野 功,磯 祐介 他: "Laplace 方程式の BEM 解析における収束評価の精密化について"境界要素法論文集. 16巻. 31-36 (1999)
Isao Iwano、Yusuke Iso 等人:“改进拉普拉斯方程 BEM 分析中的收敛性评估”边界元方法论文集 16. 31-36 (1999)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ISO Yuusuke其他文献
High-Precision Numerical Computation of Integral Equation of the First Kind
第一类积分方程的高精度数值计算
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
FUJIWARA Hiroshi;IMAI Hitoshi;TAKEUCHI Toshiki;ISO Yuusuke - 通讯作者:
ISO Yuusuke
New Multiple-Precision Arithmetic Environment and its Application fo Numerical Computation
新型多精度运算环境及其在数值计算中的应用
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
FUJIWARA Hiroshi;ISO Yuusuke - 通讯作者:
ISO Yuusuke
ISO Yuusuke的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ISO Yuusuke', 18)}}的其他基金
Mathematical modeling for glucose concentration in blood based on inverse problem analysis of fractional differential equations
基于分数阶微分方程反问题分析的血液葡萄糖浓度数学模型
- 批准号:
16K13774 - 财政年份:2016
- 资助金额:
$ 7.74万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Proposal of a new governing equation of crack propagation caused by change of temperature and its analysis
温度变化引起裂纹扩展的新控制方程的提出及其分析
- 批准号:
25610031 - 财政年份:2013
- 资助金额:
$ 7.74万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Estimation of modeling errors and their regularization in applied inverse problems
应用反问题中建模误差的估计及其正则化
- 批准号:
23654034 - 财政年份:2011
- 资助金额:
$ 7.74万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Breakthrough in numerical analysis and numerical computation related with infinitely-precision arithmetic
无限精度算术相关数值分析和数值计算的突破
- 批准号:
22340018 - 财政年份:2010
- 资助金额:
$ 7.74万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Foundation of high accuracy computational methods on the multiple-precision computer environment and its applications to analysi of inverse problems
多精度计算机环境下高精度计算方法的建立及其在反问题分析中的应用
- 批准号:
19340022 - 财政年份:2007
- 资助金额:
$ 7.74万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Establishment of New Numerical Methods for Applied Inverse and Ill-Posed Problems
应用逆问题和不适定问题的新数值方法的建立
- 批准号:
16340024 - 财政年份:2004
- 资助金额:
$ 7.74万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Numerical and Mathematical Analysis for the reconstruction for solutions of inverse and ill-posed problems by regularization methods
通过正则化方法重构逆问题和病态问题解的数值和数学分析
- 批准号:
13440031 - 财政年份:2001
- 资助金额:
$ 7.74万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Numerical Analysis for Ill-posed Problems Related with Engineering
工程不适定问题的数值分析
- 批准号:
07309021 - 财政年份:1995
- 资助金额:
$ 7.74万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
相似国自然基金
基于等几何FEM-BEM的声振系统微结构拓扑优化方法研究
- 批准号:
- 批准年份:2021
- 资助金额:61 万元
- 项目类别:面上项目
用BEM等方法对新型复合材料断裂、脱层的研究
- 批准号:19171072
- 批准年份:1991
- 资助金额:1.3 万元
- 项目类别:面上项目
相似海外基金
Rigorous Analysis and Simulation of Multi-Metasurface Systems Using the Boundary Element Method (BEM)
使用边界元法 (BEM) 对多超表面系统进行严格分析和仿真
- 批准号:
534339-2019 - 财政年份:2020
- 资助金额:
$ 7.74万 - 项目类别:
Postgraduate Scholarships - Doctoral
Rigorous Analysis and Simulation of Multi-Metasurface Systems Using the Boundary Element Method (BEM)
使用边界元法 (BEM) 对多超表面系统进行严格分析和仿真
- 批准号:
534339-2019 - 财政年份:2019
- 资助金额:
$ 7.74万 - 项目类别:
Postgraduate Scholarships - Doctoral
Development of Extended BEM Method Which Includes the Rotor-Tower Aerodynamic Interaction of Downwind Turbines
扩展 BEM 方法的发展,其中包括顺风涡轮机转子-塔架气动相互作用
- 批准号:
19K04195 - 财政年份:2019
- 资助金额:
$ 7.74万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A 3D shape optimisation system for plasmonics using isogeometric BEM
使用等几何 BEM 的等离子体激元 3D 形状优化系统
- 批准号:
18K11335 - 财政年份:2018
- 资助金额:
$ 7.74万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of a next-generation IGA-BEM based on T-splines to investigate the performance of complex-shaped wave energy devices undergoing strong mutual interactions in large arrays
开发基于T样条的下一代IGA-BEM,以研究在大型阵列中经历强相互作用的复杂形状波浪能装置的性能
- 批准号:
18K13939 - 财政年份:2018
- 资助金额:
$ 7.74万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Simulation of superconducting Cavities with Isogeometric Boundary Elements (IGA-BEM)
等几何边界元超导腔仿真 (IGA-BEM)
- 批准号:
350869536 - 财政年份:2017
- 资助金额:
$ 7.74万 - 项目类别:
Research Grants
Multi-scale adhesive contact for layered media: Asymptotic modelling, BEM simulation, and MDR extension
层状介质的多尺度粘合接触:渐近建模、BEM 模拟和 MDR 扩展
- 批准号:
374549186 - 财政年份:2017
- 资助金额:
$ 7.74万 - 项目类别:
Research Grants
Development of a design protocol for building information model (BIM) and building energy modeling (BEM)
开发建筑信息模型 (BIM) 和建筑能源建模 (BEM) 的设计协议
- 批准号:
483302-2015 - 财政年份:2015
- 资助金额:
$ 7.74万 - 项目类别:
Engage Grants Program
Application of the BEM CSS design methodology to a Sencha ExtJs App
BEM CSS 设计方法在 Sencha ExtJs 应用程序中的应用
- 批准号:
485165-2015 - 财政年份:2015
- 资助金额:
$ 7.74万 - 项目类别:
Experience Awards (previously Industrial Undergraduate Student Research Awards)
B-bem: The Bayesian building energy management Portal
B-bem:贝叶斯建筑能源管理门户
- 批准号:
EP/L024454/1 - 财政年份:2014
- 资助金额:
$ 7.74万 - 项目类别:
Research Grant