Collective Dynamics of Deterministic and Noisy Oscillator Populations: Beyond Ott-Antonsen Theory
确定性和噪声振荡器总体的集体动力学:超越奥特-安东森理论
基本信息
- 批准号:405856192
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2019
- 资助国家:德国
- 起止时间:2018-12-31 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Synchronization in ensembles of oscillators manifests itself as appearance of a macroscopic collective mode. In a particular situation, such a mode can be described analytically by virtue of the Ott-Antonsen approach. Our first aim in this project is to generalise this approach by constructing an effective perturbation theory near the Ott-Antonsen manifold, thus extending it to non-ideal situations. We will explore with this theory the effects which are not covered by the Ott-Antonsen equations: effects of intrinsic noise, of deterministic high-harmonics perturbations, of disorder in parameters. Our second goal is to study effects of common noise on the synchronization properties of coupled oscillators. The main attention will be devoted to situations where coupling is desynchronizing and thus competes with synchronizing action of noise. While analytical theory will be developed for simplest setups, the effects will be also tested on practically relevant systems like Josephson junctions and spin-torque oscillators.
振子系综的同步表现为宏观集体模的出现。在特定的情况下,这种模式可以分析描述凭借的Escherich-Antonsen方法。我们在该项目中的首要目标是通过在Ott-Antonsen流形附近构建有效的扰动理论来概括这种方法,从而将其扩展到非理想情况。我们将用这个理论来探讨那些没有被K-Antonsen方程所涵盖的效应:固有噪声的效应、确定性高次谐波扰动的效应、参数无序的效应。我们的第二个目标是研究公共噪声对耦合振子同步特性的影响。主要的注意力将致力于耦合的情况下,是desperizing,从而竞争与同步行动的噪音。虽然将为最简单的设置开发分析理论,但也将在约瑟夫森结和自旋扭矩振荡器等实际相关系统上测试其效果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Arkady Pikovsky其他文献
Professor Dr. Arkady Pikovsky的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Arkady Pikovsky', 18)}}的其他基金
Synchronization of spin-torque oscillators
自旋扭矩振荡器的同步
- 批准号:
237264495 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Research Grants
Low-dimensional dynamics in ensembles of coupled phase oscillators
耦合相位振荡器系综中的低维动力学
- 批准号:
193658860 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Research Grants
Destruction of Anderson localization in nonlinear lattices
非线性晶格中安德森局域化的破坏
- 批准号:
93017253 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Research Grants
Characterization of complex interdependencies of oscillatory processes from data with extended phase dynamics methods
使用扩展相动力学方法从数据中表征振荡过程的复杂相互依赖性
- 批准号:
54432586 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Research Units
Compactons in strongly nonlinear lattices
强非线性晶格中的压子
- 批准号:
19760810 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Research Grants
Patterns in chaotically mixing fluid flows
混沌混合流体流动的模式
- 批准号:
5424890 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Research Grants
Patterns in chaotically mixing fluid flows
混沌混合流体流动的模式
- 批准号:
5416273 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Research Grants
Strange nonchaotic attractors and critical states in quasiperiodically forced systems
准周期强迫系统中的奇异非混沌吸引子和临界状态
- 批准号:
5259616 - 财政年份:2000
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
β-arrestin2- MFN2-Mitochondrial Dynamics轴调控星形胶质细胞功能对抑郁症进程的影响及机制研究
- 批准号:n/a
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Dynamics of Deterministic and Stochastic Neural Models
确定性和随机神经模型的动力学
- 批准号:
563628-2021 - 财政年份:2021
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
Deterministic and probabilistic dynamics of nonlinear dispersive PDEs
非线性色散偏微分方程的确定性和概率动力学
- 批准号:
EP/S033157/1 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Research Grant
Collaborative Research: Dynamics of Nonlinear Partial Differential Equations: Integrating Deterministic and Probabilistic Methods
合作研究:非线性偏微分方程的动力学:集成确定性和概率方法
- 批准号:
1800852 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Continuing Grant
From Deterministic Dynamics to Thermodynamic Laws
从确定性动力学到热力学定律
- 批准号:
1813246 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Dynamics of Nonlinear Partial Differential Equations: Integrating Deterministic and Probabilistic Methods
合作研究:非线性偏微分方程的动力学:集成确定性和概率方法
- 批准号:
1764403 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Continuing Grant
FRG: Collaborative Research: Long-Term Dynamics of Nonlinear Dispersive and Hyperbolic Equations: Deterministic and Probabilistic Methods
FRG:协作研究:非线性色散和双曲方程的长期动力学:确定性和概率方法
- 批准号:
1463714 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Continuing Grant
FRG: Collaborative Research: Long-Term Dynamics of Nonlinear Dispersive and Hyperbolic Equations: Deterministic and Probabilistic Methods
FRG:协作研究:非线性色散和双曲方程的长期动力学:确定性和概率方法
- 批准号:
1462401 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Continuing Grant
FRG: Collaborative Research: Long-Term Dynamics of Nonlinear Dispersive and Hyperbolic Equations: Deterministic and Probabilistic Methods
FRG:协作研究:非线性色散和双曲方程的长期动力学:确定性和概率方法
- 批准号:
1463746 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Continuing Grant
FRG: Collaborative Research: Long-Term Dynamics of Nonlinear Dispersive and Hyperbolic Equations: Deterministic and Probabilistic Methods
FRG:协作研究:非线性色散和双曲方程的长期动力学:确定性和概率方法
- 批准号:
1463753 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Continuing Grant
Chaotic dynamics of deterministic and random maps
确定性和随机映射的混沌动力学
- 批准号:
105717-2010 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual