自由境界問題における定常球の多重存在とその安定性
自由边界问题中静止球体的多重存在及其稳定性
基本信息
- 批准号:10740083
- 负责人:
- 金额:$ 0.9万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Encouragement of Young Scientists (A)
- 财政年份:1998
- 资助国家:日本
- 起止时间:1998 至 1999
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
活性因子・抑制因子モデルとよばれるモデルに現れる境界面を記述するステファン型の発展方程式について、定常状態にある球面の存在と安定性について研究を行ないました。得られた結果は以下の通りです。まず球面状の境界面をもつ定常状態は一般に複数個存在することがわかりました。その安定性を調べた結果、それら複数個の定常球は、4種類に分類できることを証明しました。第1のタイプは安定な場合であり、第2のタイプは球対称なある摂動にのみ不安定であるものです。第3のタイプは最不安定なある非対称モードをもつもので、第4のタイプは2重のゼロ固有値をものものです。この結果は化学反応において核の生成と成長に対して知見と示唆を与えるものと思われます。
Activity factor, inhibition factor, boundary surface, development equation, steady state, existence of sphere, stability, etc. The results are as follows. A spherical boundary surface is a steady state, and a plurality of states exist. The results of stability adjustment, multiple steady spheres, and 4 kinds of classification are proved. The 1st and the 2nd are unstable. The third is the most unstable, the fourth is the most unstable, and the fourth is the most unstable. The results are chemical reactions, nuclear formation, and growth.
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
M.Taniguchi: "Multiple eristence and linear stability of equilibrium balls in a nonlinear free boundary problem" Quarterly of Applied Mathematics. (掲載受理).
M.Taniguchi:“非线性自由边界问题中平衡球的多重存在和线性稳定性”应用数学季刊(已接受出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M.Taniguchi: "Multiple existence and linear stability of equilibrium balls in a nonlinear free boundary problem"Quarterly of Applied Mathematics. (掲載受理).
M.Taniguchi:“非线性自由边界问题中平衡球的多重存在性和线性稳定性”应用数学季刊(已接受出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
X.Chen and M.Taniguchi: "Instability of spherical interfaces in a nonlinear free boundary problem"Advances in Differential Equations. (掲載受理).
X.Chen 和 M.Taniguchi:“非线性自由边界问题中球面界面的不稳定性”微分方程进展(已接受出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M.Taniguchi: "Multiple existence and classification of equilibrium balls in a free boundary problem"Proceedings for the 2nd International Conference on Bifurcation Theory and its Numerical Analysis. 173 (1998)
M.Taniguchi:“自由边界问题中平衡球的多重存在和分类”第二届分岔理论及其数值分析国际会议论文集。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
谷口 雅治其他文献
谷口 雅治的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('谷口 雅治', 18)}}的其他基金
Traveling fronts whose cross sections are convex shapes with major axes and minor axes in balanced bistable reaction-diffusion equations
平衡双稳态反应扩散方程中截面为凸形且具有长轴和短轴的行进锋
- 批准号:
20K03702 - 财政年份:2020
- 资助金额:
$ 0.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Allen-Cahn方程式におけるV字型進行曲面波
Allen-Cahn 方程中的 V 形行波表面波
- 批准号:
15740102 - 财政年份:2003
- 资助金额:
$ 0.9万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
V字型の進行曲面波の漸近安定性
V型表面行波的渐近稳定性
- 批准号:
13740113 - 财政年份:2001
- 资助金额:
$ 0.9万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
等速成長効果のある平均曲率流方程式における進行曲面波
具有均匀增长效应的平均曲率流方程中的行波面
- 批准号:
12740100 - 财政年份:2000
- 资助金额:
$ 0.9万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
平面状進行波の不安定性
平面行波不稳定性
- 批准号:
08740100 - 财政年份:1996
- 资助金额:
$ 0.9万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
反応拡散方程式による直線状内部遷移層解からの解の分岐構造の研究
使用反应扩散方程研究线性内部过渡层解的分叉结构
- 批准号:
07740102 - 财政年份:1995
- 资助金额:
$ 0.9万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
非線形反応拡散方程式による直線状界面の解析
使用非线性反应扩散方程分析线性界面
- 批准号:
06740113 - 财政年份:1994
- 资助金额:
$ 0.9万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
相似国自然基金
铜募集微纳米网片上调LOX活性稳定胶原网络促进盆底修复的研究
- 批准号:82371638
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
随机激励下多稳态系统的临界过渡识别及Basin Stability分析
- 批准号:11872305
- 批准年份:2018
- 资助金额:65.0 万元
- 项目类别:面上项目
PPFS调节多倍体水稻花粉育性的功能研究
- 批准号:31140033
- 批准年份:2011
- 资助金额:10.0 万元
- 项目类别:专项基金项目
关于铁磁链方程组的解的部分正则性的研究
- 批准号:10926050
- 批准年份:2009
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
计算电磁学高稳定度辛算法研究
- 批准号:60931002
- 批准年份:2009
- 资助金额:200.0 万元
- 项目类别:重点项目
拉压应力状态下含充填断续节理岩体三维裂隙扩展及锚杆加固机理研究
- 批准号:40872203
- 批准年份:2008
- 资助金额:45.0 万元
- 项目类别:面上项目
铝合金中新型耐热合金相的应用基础研究
- 批准号:50801067
- 批准年份:2008
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于系统轨迹灵敏度的电力市场下最佳安全运行算法研究
- 批准号:50377028
- 批准年份:2003
- 资助金额:20.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: NSFDEB-NERC: Warming's silver lining? Thermal compensation at multiple levels of organization may promote stream ecosystem stability in response to drought
合作研究:NSFDEB-NERC:变暖的一线希望?
- 批准号:
2312706 - 财政年份:2024
- 资助金额:
$ 0.9万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
- 批准号:
2344215 - 财政年份:2024
- 资助金额:
$ 0.9万 - 项目类别:
Standard Grant
The Mechanism and Stability of Global Imbalances
全球失衡的机制与稳定性
- 批准号:
23K22120 - 财政年份:2024
- 资助金额:
$ 0.9万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Investigating the stability of the inverse Brascamp-Lieb inequality
研究反 Brascamp-Lieb 不等式的稳定性
- 批准号:
23K25777 - 财政年份:2024
- 资助金额:
$ 0.9万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Trait-shift induced interaction modification: How individual variation affects ecosystem stability
性状转变引起的相互作用修改:个体变异如何影响生态系统稳定性
- 批准号:
2330970 - 财政年份:2024
- 资助金额:
$ 0.9万 - 项目类别:
Standard Grant
CAREER: Interpolation, stability, and rationality
职业:插值、稳定、合理
- 批准号:
2338345 - 财政年份:2024
- 资助金额:
$ 0.9万 - 项目类别:
Continuing Grant
Collaborative Research: Sediment and Stability: Quantifying the Effect of Moraine Building on Greenland Tidewater Glaciers
合作研究:沉积物和稳定性:量化冰碛建筑对格陵兰潮水冰川的影响
- 批准号:
2234522 - 财政年份:2024
- 资助金额:
$ 0.9万 - 项目类别:
Standard Grant
Collaborative Research: Sediment and Stability: Quantifying the Effect of Moraine Building on Greenland Tidewater Glaciers
合作研究:沉积物和稳定性:量化冰碛建筑对格陵兰潮水冰川的影响
- 批准号:
2234523 - 财政年份:2024
- 资助金额:
$ 0.9万 - 项目类别:
Standard Grant
Collaborative Research: Sediment and Stability: Quantifying the Effect of Moraine Building on Greenland Tidewater Glaciers
合作研究:沉积物和稳定性:量化冰碛建筑对格陵兰潮水冰川的影响
- 批准号:
2234524 - 财政年份:2024
- 资助金额:
$ 0.9万 - 项目类别:
Standard Grant
Understanding the mechanisms of microbial community assembly, stability and function
了解微生物群落组装、稳定性和功能的机制
- 批准号:
NE/Y001249/1 - 财政年份:2024
- 资助金额:
$ 0.9万 - 项目类别:
Research Grant