VerA: Fully Automatic Formal Verification of Arithmetic Circuits

VerA:算术电路的全自动形式验证

基本信息

项目摘要

Today arithmetic circuits play a crucial role in many computationally intensive applications (like signal processing and cryptography) as well as in upcoming AI architectures (e.g. for machine learning and deep learning).The diversity of arithmetic circuits is huge and covers a wide range of different operations from trigonometric functions to floating point square root. Despite this diversity, almost all intricate operations can be performed using four basic operations: addition, subtraction, multiplication, and division.In order to satisfy the demands for high speed, low power, and low area designs, a large variety of architectures have been proposed for arithmetic units. These architectures take advantage of sophisticated algorithms to optimize different implementation aspects. As a result, they are usually extensively parallel and structurally complex which makes it extremely challenging to ensure the correctness of such arithmetic circuit implementations.In the project VerA, we envision a fully automatic formal verification methodology that goes beyond incomplete simulation-based approaches and semi-automatic approaches based on theorem proving which are still the state-of-the-art for arithmetic circuit verification in industrial practice.Only *formal* verification is able to provide rigorous guarantees concerning the correctness of arithmetic circuits. *Full automation* is needed, since thedesign of circuits containing arithmetic is nowadays not only confinedto the major processor vendors, but is also done by many different suppliers of special-purpose embedded hardware who cannot afford to employ large teams of specialized verification engineers being able to provide human-assisted theorem proofs. Thus, the need for an automated formal verification of arithmetic circuits has substantially increased during the last years.In this project, we focus on the most challenging task in arithmetic circuitverification, the verification of circuits containing complex and highly optimized industrial multipliers and dividers at the gate level. Whereas the question has been open for a long time, encouraged by recent advances in verification based on Symbolic Computer Algebra, we strongly believe that it is the ideal time to attack this problem.
如今,算术电路在许多计算密集型应用(如信号处理和密码学)以及即将到来的人工智能架构(如机器学习和深度学习)中发挥着至关重要的作用。算术电路的多样性非常巨大,涵盖了从三角函数到浮点平方根的各种不同运算。尽管如此,几乎所有复杂的运算都可以使用四种基本运算来执行:加、减、乘和除。为了满足高速、低功耗和小面积设计的要求,已经提出了各种各样的算术单元结构。这些架构利用复杂的算法来优化不同的实现方面。因此,它们通常是广泛并行的并且结构复杂,这使得确保这种算术电路实现的正确性极具挑战性。我们设想了一种全自动的形式化验证方法,它超越了基于不完全模拟的方法和基于定理证明的半自动方法,这些方法仍然是目前的状态,在工业实践中,算术电路验证的一种技术。只有形式验证才能对算术电路的正确性提供严格的保证。* 完全自动化 * 是必要的,因为电路的设计包含算术现在不仅局限于主要的处理器供应商,但也是由许多不同的供应商的专用嵌入式硬件谁不能聘请大型团队的专业验证工程师能够提供人工辅助定理证明。因此,在过去的几年里,对算术电路的自动化形式验证的需求大幅增加。在这个项目中,我们专注于算术电路验证中最具挑战性的任务,即在门级验证包含复杂和高度优化的工业乘法器和除法器的电路。鉴于这个问题已经开放了很长一段时间,最近的进展基于符号计算机代数的验证鼓励,我们坚信,这是理想的时间来解决这个问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Rolf Drechsler其他文献

Professor Dr. Rolf Drechsler的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Rolf Drechsler', 18)}}的其他基金

MANIAC: BDD Manipulation for Approximate Computing
MANIAC:近似计算的 BDD 操作
  • 批准号:
    283653053
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Entwicklung eines durchgängigen Verifikationsablaufes für den ESL Entwurf
为 ESL 草案制定一致的验证流程
  • 批准号:
    188461301
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Reinhart Koselleck Projects
Qualitätsorientierte Synthese großer Funktionen in reversibler Logik
可逆逻辑中大函数的面向质量的综合
  • 批准号:
    147703507
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Formaler Robustheitsnachweis im computergestützten Schaltkreisentwurf
计算机辅助电路设计稳健性的形式证明
  • 批准号:
    61273444
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Effiziente Erfüllbarkeitsalgorithmen für die Generierung von Testmustern
用于生成测试模式的高效可满足性算法
  • 批准号:
    15765440
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Formale Verifikation von Schaltkreisen unter Verwendung von Informationen der Hochsprachenebene
使用高级语言信息对电路进行形式化验证
  • 批准号:
    5369462
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Research Grants
OptiSecure – Securing Nano-Circuits against Optical Probing
OptiSecure â 保护纳米电路免受光学探测
  • 批准号:
    439918011
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
PolyVer: Polynomial Verification of Electronic Circuits
PolyVer:电子电路的多项式验证
  • 批准号:
    431649366
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Reinhart Koselleck Projects
Unlocking Analog Features and Full Parallelism for HDL-based Synthesis of PLiM
解锁基于 HDL 的 PLiM 合成的模拟功能和完全并行性
  • 批准号:
    406079023
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
EMBOSOM - Emigrating Embedded Software Security into Modern Emerging Hardware Paradigms
EMBOSOM - 将嵌入式软件安全迁移到现代新兴硬件范例中
  • 批准号:
    535695900
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes

相似海外基金

Fully automatic large-scale rock shearing machine in a cold chamber
冷室全自动大型岩石剪切机
  • 批准号:
    524663687
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Major Research Instrumentation
Fully Automatic Segmentation and Assessment of Atrial Scars for Atrial Fibrillation PatientsUsing LGE MRI
使用 LGE MRI 对心房颤动患者的心房疤痕进行全自动分割和评估
  • 批准号:
    MC_PC_21013
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Intramural
GaViX - Fully Automatic Sorting Systems for nuclear waste
GaViX - 核废料全自动分选系统
  • 批准号:
    99962
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Small Business Research Initiative
Advanced functionality of fully automatic diagnostic equipment for malaria elimination
消除疟疾全自动诊断设备的先进功能
  • 批准号:
    19K07532
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of fully automatic analysis software of SEC-SAXS serial data using information science technique
利用信息科学技术开发SEC-SAXS串行数据全自动分析软件
  • 批准号:
    19K06516
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of a fully automatic driving system that enables natural driving at urban intersections
开发可在城市十字路口实现自然驾驶的全自动驾驶系统
  • 批准号:
    17H03201
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Automatic segmentation of healthy tissues and tumours in patient brain images using 3D fully convolutional neural networks
使用 3D 全卷积神经网络自动分割患者大脑图像中的健康组织和肿瘤
  • 批准号:
    505357-2016
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Collaborative Research and Development Grants
Fully automatic mapping of cerebral perfusion territories using Magnetic Resonance Imaging
使用磁共振成像全自动绘制脑灌注区域
  • 批准号:
    299253112
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Grants
From CAD and digital imaging to fully automatic adaptive 3D analysis
从 CAD 和数字成像到全自动自适应 3D 分析
  • 批准号:
    DP150103747
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Fully automatic and scalable Bayesian model selection method for tensor decomposition
张量分解的全自动且可扩展的贝叶斯模型选择方法
  • 批准号:
    15K16055
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了