位相幾何学に現われる数理物理と数式処理の研究

拓扑学中数学物理及公式处理的研究

基本信息

  • 批准号:
    07640100
  • 负责人:
  • 金额:
    $ 0.96万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
  • 财政年份:
    1995
  • 资助国家:
    日本
  • 起止时间:
    1995 至 无数据
  • 项目状态:
    已结题

项目摘要

平成7年度一般(C)位相幾何学に現われる数理物理と数式処理の研究の、研究実績内容は各分担について以下の通りである。(1)山口:最近話題となっているゲージ理論等で現われる接続のモジュライに関連した、Configuration-空間のトポロジーを研究した。とくに、(種数0の)リーマン球S^2上の自己正則写像の作る空間Hol_d(S^2,S^2)のホモトピー型に関する研究結果を論文に発表した。さらに以前に、Arnold達によって研究されてきた、重複度がn未満の複素数係数の多項式のなす空間のトポロジーが、S^2から複素射影空間への正則写像の作るHol_d(S^2,CP^<n-1>)にホモトピカルに密接に関連することを研究した。(これに関しては論文準備中である。)また、この応用としてVssiliev達が研究している特異点関連の分野や、またその数式処理についても研究した。(2)水野:代数曲線及び代数曲面から導かれる誤り訂正符号について、その構成、性能評価、その復号のアルゴリズムの研究を担当した。またグラフ理論においては有向対称グラフの被覆について、その同型類の個数を決定と特性多項式の構造を研究した。(3)吉岡:基点が有限個で、断面種数がデルタ種数より大きい偏極が与える有理写像が2対1の偏極多様体になるものでデルタ種数が5となるものについての(3次元以上の)、分類および構成について研究した。(4)安香:上記研究に関連したリーマン幾何学に関する話題についての研究を分担した。(5)大久保:常微分方程式の研究と、それに関連した数式処理の研究を担当した。(6)小島:保型形式の解析的研究および整数論へのその応用について研究を行った。
Heisei 7th year General (C) Phase geometry research and development of mathematical physics, research achievements and sharing of the following (1)Yamaguchi: Recent topics such as the development of new technologies, new technologies, and new technologies This paper presents the results of the study on the regular pattern of images in the space Hol_d(S^2, S^2). In the past, Arnold has studied the relationship between the complex prime coefficients of the polynomial space and the regular image of the complex prime projection space<n-1>. (.) The research on the relationship between special points and numerical methods is carried out. (2)Mizuno: Algebraic curves and algebraic surfaces are responsible for correcting symbols, composition, performance evaluation, and complex symbols. In the theory of symmetry, the number of isotype classes is determined and the construction of characteristic polynomials is studied. (3)Yoshioka: Base points are finite, number of sections is finite. (4)An Xiang: On the topic of geometry, the research on the relationship between geometry and history should be shared. (5)Okubo: Research on ordinary differential equations, correlation and numerical treatment (6)Kojima: A study of the analytic form of preservation and integer theory.

项目成果

期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
M.Guest,A.Kozlowski,M.Murayama,K.Yamaguchi: "The homotopy type of the space of vational functions" J. Math. Kyoto Univ.35-4. 631-638 (1995)
M.Guest、A.Kozlowski、M.Murayama、K.Yamaguchi:“空函数空间的同伦型”J. Math。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
M.Yoshioka: "Polarized Surfaces of low degrees with vespect to the Delta-genus" Tohoku Math. J.47. 441-459 (1995)
M.Yoshioka:“与 Delta 属相关的低度偏振表面”东北数学。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H.Kojima: "Shimura covrespondence of Maass farms on half integral weightls" Acta Anthmetica. LXIX. 367-385 (1995)
H.Kojima:“Maass 农场在半积分权重上的志村对应”Acta Anthmetica。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H.Mizuno,I.Sato: "Characteristic polynomials of some graph coverings" Discrete Math.142. 295-298 (1995)
H.Mizuno,I.Sato:“某些图形覆盖的特征多项式”离散数学.142。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
水野弘文,花井充: "GF(2^S)上のFermat型曲面とそれに付随する符号" 電気通信大学紀要. 8-1. 27-36 (1995)
Hirofumi Mizuno、Mitsuru Hanai:“GF(2^S) 上的费马型表面及其相关代码”电子通信大学公告 8-1(1995)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

山口 耕平其他文献

The homotopy of spaces of algebraic maps and related topics
代数映射空间的同伦及相关主题
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Adamaszek;A. Kozlowski;K. Yamaguchi;山田裕一;石田晴久;石田晴久;山田裕一;石田晴久;山田裕一;石田晴久;山口耕平;山口耕平;石田晴久;山田裕一;石田晴久;Y. Yamada;石田晴久;石田晴久;山田裕一;山口 耕平;石田晴久;山田裕一;石田晴久;石田晴久;山田裕一;山田裕一;石田晴久;山口 耕平
  • 通讯作者:
    山口 耕平
Note on the space of algebraic loops on a toric variety
关于环面簇上代数环空间的注解
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Andrzej Kozlwski;Kohhei Yamaguchi;山口 耕平
  • 通讯作者:
    山口 耕平
ライフサイクル環境負荷を考慮したLRT整備の評価に関する研究
考虑生命周期环境负荷的轻轨发展评价研究
  • DOI:
  • 发表时间:
    2001
  • 期刊:
  • 影响因子:
    0
  • 作者:
    山口 耕平;青山 吉隆;中川 大;松中 亮治;西尾 健司
  • 通讯作者:
    西尾 健司
次世代シーケンサー(NGS)を用いた流産絨毛組織の染色体数解析
使用下一代测序仪 (NGS) 对流产绒毛组织进行染色体数目分析
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    三東 光夫;田村 結城;荒木 康久;松林 秀彦;高谷 友紀子;土信田 雅一;坂口 健一郎;山口 耕平;水田 真平;高橋 智恵;金 南孝;奥野 幸一郎;北宅 弘太郎;竹内 巧;石川 智基
  • 通讯作者:
    石川 智基
Change maker とトーラス結び目のレンズ空間手術
改变者和环面结透镜空间手术
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Syunji Moriya;Keiichi Sakai;Hiroshi Tamaru;山口 耕平;山田裕一
  • 通讯作者:
    山田裕一

山口 耕平的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('山口 耕平', 18)}}的其他基金

Homotopy theory related to toric varieties and its related geomety
与环面簇相关的同伦理论及其相关几何
  • 批准号:
    22K03283
  • 财政年份:
    2022
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
位相幾何学の数理物質への応用と数式処理の研究
拓扑学在数学材料中的应用及数学公式处理研究
  • 批准号:
    08640094
  • 财政年份:
    1996
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
位相幾何学の数理物理への応用と数式処理の研究
拓扑在数学物理中的应用及数学公式处理研究
  • 批准号:
    06640117
  • 财政年份:
    1994
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
非安定および安定ホモトピー論の研究
非稳定与稳定同伦理论研究
  • 批准号:
    03740019
  • 财政年份:
    1991
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
非安定および安定ホモトピー論の研究
非稳定与稳定同伦理论研究
  • 批准号:
    01740023
  • 财政年份:
    1989
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
非安定および安定ホモトピー論の研究
非稳定与稳定同伦理论研究
  • 批准号:
    62740019
  • 财政年份:
    1987
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)

相似海外基金

ゲージ理論のための量子計算手法の開発と非平衡現象への応用
规范理论量子计算方法的发展及其在非平衡现象中的应用
  • 批准号:
    24K00630
  • 财政年份:
    2024
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
ゲージ理論と微分トポロジーの諸相
规范理论和微分拓扑方面
  • 批准号:
    24K06716
  • 财政年份:
    2024
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
安定ホモトピー論のSeiberg-Wittenゲージ理論への応用
稳定同伦理论在Seiberg-Witten规范理论中的应用
  • 批准号:
    24KJ0795
  • 财政年份:
    2024
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
ゲージ理論とシンプレクティック・コンタクト幾何学
规范理论和辛接触几何
  • 批准号:
    22KJ1293
  • 财政年份:
    2023
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
無限次元量子代数を用いた超対称ゲージ理論の双対性および可解性の研究
利用无限维量子代数研究超对称规范理论的对偶性和可解性
  • 批准号:
    22KJ1031
  • 财政年份:
    2023
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
アノマリーマッチングに基づくゲージ理論と相構造の非摂動的研究
基于异常匹配的规范理论与相结构非微扰研究
  • 批准号:
    22KJ0599
  • 财政年份:
    2023
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
ゲージ理論に由来する不変量の研究
规范理论衍生的不变量研究
  • 批准号:
    22KJ1665
  • 财政年份:
    2023
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
開4次元多様体に対するゲージ理論とその応用
规范理论及其在开四维流形中的应用
  • 批准号:
    22K13921
  • 财政年份:
    2022
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
格子ゲージ理論の四次元多様体論への応用とザイバーグ=ウィッテン理論の差分化
格规范理论在四维流形理论中的应用及Seiberg-Witten理论的微分
  • 批准号:
    21K03222
  • 财政年份:
    2021
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
4次元トポロジーとゲージ理論
4D 拓扑和规范理论
  • 批准号:
    21J14912
  • 财政年份:
    2021
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了