A Study on Flywheel Energy Storage System Mounted on Electric Vehicle
电动汽车飞轮储能系统研究
基本信息
- 批准号:19206025
- 负责人:
- 金额:$ 30.87万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (A)
- 财政年份:2007
- 资助国家:日本
- 起止时间:2007 至 2009
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Flywheel energy storage system (FESS) works by accelerating flywheel to high speed rotation and maintaining the energy in the system as kinetic energy. The energy is converted back by slowing down the flywheel. A typical system consists of a rotor suspended by bearings inside a vacuum chamber to reduce friction, connected to a combined electric motor/generator. Active magnetic bearings (AMBs) are necessary to improve total energy efficiency. In conventional mechanical bearings, viscous damping is directly proportional to speed, and at high speed, too much energy would be lost. From this background, we have been focusing on the use of AMB in FESS due to the significant advantages such as contactless and frictionless bearings at high speed rotation. Usually, magnetic bearings are mostly used only in systems with immovable environment. Here on the contrary, we developed a vehicle with flywheel using magnetic bearing and gimbal mechanism as energy storage system.Flywheel-power assisted car … More s (mostly mechanical, or with mechanical bearings) have been developed since long time ago and in ongoing researchs in effort to make flywheel systems smaller, lighter, cheaper and have greater capacity. Proposed flywheel systems would eliminate the disadvantages of existing battery systems such as low power density, long charge times, heavy weight, short lifetimes, and lead pollution. The weakness is difficulty to store energy for a long time in flywheel. And, high speed rotation implies that the safety concerned with burst failures should be guaranteed. From this consideration, carbon fiber reinforced polymer (CFRP) is chosen as the material for the flywheel, since it is lighter and yet stronger than steel.In vehicle applications, flywheels also act as gyroscopic body, since the angular momentum is typically of a similar order of magnitude as the forces acting on the moving vehicle. This property may be detrimental to the handling characteristics. Besides, this property could be utilized to improve stability in curves. Conversely, the effect can be almost completely removed by mounting the flywheel within an appropriately applied set of gimbals, where the angular momentum is conserved without affecting the vehicles. We achieved good performance of flywheel supported by zero-bias AMBs by means of controllers which significantly compensate gyroscopic effects. The flywheel can rotate up to 300Hz without any gyroscopic effect. We mounted FESS on an electric vehicle (EV) and designed electric power converter to charge/discharge the energy. We developed and implemented new algorithm to compensate gyroscopic effect while EV is turning. This report describes experimental results including maneuverability and overall energy efficiency, including the results of outdoor field experiments such asfeasibility test of steer-by-wire system, implementation of input shaping to reduce vibration and gyroscopic effects, simple adaptive control method for flywheel attitude control, and the efficiency measurement of the energy conversion system. Less
飞轮储能系统(FESS)是将飞轮加速到高速旋转状态,并将系统中的能量以动能的形式保持下来。能量通过减慢飞轮的速度转换回来。一个典型的系统由一个转子组成,该转子由真空室内的轴承悬挂以减少摩擦,连接到一个组合的电动机/发电机。主动磁轴承(AMB)是提高总能量效率的必要手段。在传统的机械轴承中,粘性阻尼与速度成正比,并且在高速下,会损失太多的能量。在这种背景下,我们一直专注于使用电磁轴承在FESS由于显着的优势,如无接触和无摩擦轴承在高速旋转。通常情况下,磁力轴承大多只用于具有固定环境的系统中。在此,我们开发了一种利用磁悬浮轴承和万向节机构作为储能系统的飞轮汽车。飞轮助力汽车 ...更多信息 飞轮系统(大部分是机械的,或者具有机械轴承)从很久以前就已经被开发出来,并且在进行中的研究中努力使飞轮系统更小、更轻、更便宜并且具有更大的容量。提出的飞轮系统将消除现有电池系统的缺点,例如低功率密度、长充电时间、重重量、短寿命和铅污染。其缺点是飞轮难以长时间储能。而且,高速旋转意味着应该保证与突发故障有关的安全性。基于这一考虑,碳纤维增强聚合物(CFRP)被选为飞轮的材料,因为它比钢更轻,但强度更高。在车辆应用中,飞轮还可以用作陀螺体,因为角动量通常与作用在运动车辆上的力具有相似的数量级。该性质可能对操纵特性有害。此外,这一性质可以用来改善曲线的稳定性。相反,通过将飞轮安装在适当应用的万向节组内,可以几乎完全消除这种影响,其中角动量守恒而不影响飞行器。通过控制器对陀螺效应的补偿,实现了零偏磁轴承支撑飞轮的良好性能。飞轮可以旋转高达300赫兹没有任何陀螺效应。我们将FESS安装在电动汽车上,并设计了电力转换器来充电/放电能量。我们开发并实现了新的算法来补偿电动汽车转弯时的陀螺效应。该报告描述了实验结果,包括机动性和整体能源效率,包括户外现场实验的结果,如线控转向系统的可行性测试,输入整形的实施,以减少振动和陀螺效应,简单的自适应控制方法,飞轮姿态控制,和能量转换系统的效率测量。少
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
フライホイール磁気軸受のゼロバイアスゲインスケヲユール型PID制御
飞轮磁力轴承的零偏置增益缩放 PID 控制
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:栗山 健太・野波 健蔵・酒井 悟
- 通讯作者:栗山 健太・野波 健蔵・酒井 悟
Modeling and Consideration of AMB-Flywheel Supported by Two-axis Gimbal
两轴万向节支撑的AMB-飞轮建模与思考
- DOI:
- 发表时间:2009
- 期刊:
- 影响因子:0
- 作者:K. Kuriyama;K. Nonami;B. Rachmanto
- 通讯作者:B. Rachmanto
A Study on AMB Flywheel Powered Electric Vehicle
AMB飞轮驱动电动汽车的研究
- DOI:
- 发表时间:2009
- 期刊:
- 影响因子:0
- 作者:B. Rachmanto;K. Nonami;K. Kuriyama
- 通讯作者:K. Kuriyama
A novel passivity based control of active magnetic bearing systems without conventional cross-feedback
一种新颖的基于无源性的主动磁力轴承系统控制,无需传统的交叉反馈
- DOI:
- 发表时间:2009
- 期刊:
- 影响因子:0
- 作者:Satoru Sakai;Kenta Kuriyama;Kenzo Nonami
- 通讯作者:Kenzo Nonami
Modeling and Consideration of AMB-Flywheel Supported by Two axis Gimbal Vol.3, No.4
两轴万向节支撑的AMB-飞轮建模与思考 Vol.3, No.4
- DOI:
- 发表时间:2009
- 期刊:
- 影响因子:0
- 作者:K.Kuriyama;K.Nonami;B.Rachmanto
- 通讯作者:B.Rachmanto
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NONAMI Kenzo其他文献
NONAMI Kenzo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NONAMI Kenzo', 18)}}的其他基金
A Study on High Performance Autonomous Aerial and Ground Robots for Prevention of Nuclear Disaster
预防核灾难的高性能自主空中和地面机器人研究
- 批准号:
25249021 - 财政年份:2013
- 资助金额:
$ 30.87万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Development of Flight Simulator for Next Innovative Autonomous Control Based Mini-surveyor
为下一代创新型自主控制微型测量仪开发飞行模拟器
- 批准号:
25630074 - 财政年份:2013
- 资助金额:
$ 30.87万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
High Performance Flywheel Energy Storage System and Its applicationfor Electric Vehicle
高性能飞轮储能系统及其在电动汽车上的应用
- 批准号:
24656152 - 财政年份:2012
- 资助金额:
$ 30.87万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
A Study on Electric Vehicle with Flywheel Energy Storage System Supported by Active Magnetic Bearings
主动磁力轴承支持的飞轮储能系统电动汽车研究
- 批准号:
23656160 - 财政年份:2011
- 资助金额:
$ 30.87万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
A Study on Advanced Network System of Ubiquitous Small-scale Aerial and Ground Robots for High Performance Prevention of Disaster
高性能防灾泛在小型空中地面机器人先进网络系统研究
- 批准号:
22246028 - 财政年份:2010
- 资助金额:
$ 30.87万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Flywheel Energy Storage System with Zero Power and Lossless Magnetic Bearing
零功率无损磁力轴承飞轮储能系统
- 批准号:
15206025 - 财政年份:2003
- 资助金额:
$ 30.87万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Nonlinear Zero Power Control of Magnetic Bearing Based Flywheel Using Lyapunov Direct Method
李雅普诺夫直接法磁力轴承飞轮非线性零功率控制
- 批准号:
13555061 - 财政年份:2001
- 资助金额:
$ 30.87万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Flexible Flyweel Based on Superconducting Magnetic Levitation with Unbalance Vibration Control
基于超导磁悬浮不平衡振动控制的柔性飞轮
- 批准号:
11555065 - 财政年份:1999
- 资助金额:
$ 30.87万 - 项目类别:
Grant-in-Aid for Scientific Research (B).
Nonlinear Control of Zero Power Magnetic Bearing Using Exact Linearization and Sliding Mode Control
使用精确线性化和滑模控制的零功率磁力轴承非线性控制
- 批准号:
11650242 - 财政年份:1999
- 资助金额:
$ 30.87万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
LMI Based Gain-Scheduled Sliding Mode Control for Nonlinear and Time Varying Systems
基于 LMI 的非线性和时变系统增益调度滑模控制
- 批准号:
09650264 - 财政年份:1997
- 资助金额:
$ 30.87万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
高温超電導磁気軸受の高機能化とその応用および特性解析
高性能高温超导磁力轴承及其应用及特性分析
- 批准号:
22K03992 - 财政年份:2022
- 资助金额:
$ 30.87万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
磁気軸受加振によるロータクラック検出と有限要素解析を併用したその位置・深さの推定
使用磁力轴承激励进行转子裂纹检测,并使用有限元分析估计其位置和深度
- 批准号:
17760182 - 财政年份:2005
- 资助金额:
$ 30.87万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
ソリッドロータを支持する磁気軸受のゼロパワー非線形制御
支撑实心转子磁力轴承的零功率非线性控制
- 批准号:
16760171 - 财政年份:2004
- 资助金额:
$ 30.87万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
コーン形のセンサレス磁気軸受の開発
锥形无传感器磁力轴承的研制
- 批准号:
15760160 - 财政年份:2003
- 资助金额:
$ 30.87万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
磁気軸受による加振とモード解析を用いたロータクラックの検出とその位置・深さの特定
使用磁力轴承和模态分析进行振动检测转子裂纹并识别其位置和深度
- 批准号:
14750159 - 财政年份:2002
- 资助金额:
$ 30.87万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
初期状態の不確かさを考慮したH_∞制御による磁気軸受の過渡応答改善に関する研究
考虑初始状态不确定性的H_∞控制改善磁力轴承瞬态响应研究
- 批准号:
14750365 - 财政年份:2002
- 资助金额:
$ 30.87万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
モデルの同定と補償器設計の繰り返し設計法にもとつく磁気軸受のロバスト制御
基于补偿器设计模型辨识和迭代设计方法的磁力轴承鲁棒控制
- 批准号:
11750385 - 财政年份:1999
- 资助金额:
$ 30.87万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
ギャップ磁束による磁気軸受のセンサレス制御
使用间隙磁通量的磁力轴承无传感器控制
- 批准号:
09750160 - 财政年份:1997
- 资助金额:
$ 30.87万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
高温超電導磁気軸受で支持された回転体の動力学現象の解明
阐明高温超导磁力轴承支撑的旋转体的动力学现象
- 批准号:
09750270 - 财政年份:1997
- 资助金额:
$ 30.87万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
ディスクリプタ形式に基づく定数スケールドH_∞制御による磁気軸受けのロバスト制御
基于描述符格式的恒定缩放 H_∞ 控制磁力轴承的鲁棒控制
- 批准号:
09750475 - 财政年份:1997
- 资助金额:
$ 30.87万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)