Finite difference and finite element analysis for partial differential equations

偏微分方程的有限差分和有限元分析

基本信息

  • 批准号:
    11440030
  • 负责人:
  • 金额:
    $ 4.16万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    1999
  • 资助国家:
    日本
  • 起止时间:
    1999 至 2001
  • 项目状态:
    已结题

项目摘要

The starting point of this research is the following result obtained by Yamamoto (1998): The S-W finite difference solution for the boundary value problem-Δu+f(x,y,u)=0 in Ω, u=g on Γ=δΩ (1)with equal mesh size h in x and y directions yields O(h^3) accuracy near Γ and O(h^2) accuracy in other grid points, provided that u ∈ C^<3,1>(Ω^^-). This property is called "superconvergence".Through this project, we obtained the following results:(i) Superconvergence of the implicit finite difference scheme for the convection-diffusion problem u_t + div{-K(x,y)▽u + ua} = f(x,y) in Ω x (0,T).(ii) Convergence of inconsistent finite difference methods for (1) and acceleration of the numerical solution by stretching functions in the case where Ω is a square, a disk, or a sector.Some convergence theorems have been obtained.(iii) Precise error analysis for finite difference and finite element methods applied to two-point boundary value problems.By using the harmonic relation between the Green function and the discrete Green function, we obtained some interesting results on superconvergence.
本文的出发点是Yamamoto(1998)得到的结果:当u ∈ C^<3,1>(Ω^-)时,边值问题-Δu+f(x,y,u)=0,u=g,在r =δΩ(1)上的S-W有限差分解在x和y方向上的网格尺寸h相等时,在r附近的精度为O(h^3),在其他网格点上的精度为O(h^2)。(1)对流扩散问题u_t + div{-K(x,y)<$u + ua} = f(x,y)在Ω x(0,T)中的隐式差分格式的超收敛性。(ii)在Ω为正方形、圆盘形或扇形的情形下,研究了(1)的不相容差分方法的收敛性及拉伸函数对数值解的加速作用,得到了一些收敛定理。(iii)对两点边值问题的有限差分和有限元方法进行了精细误差分析,利用绿色函数与离散绿色函数之间的调和关系,得到了一些有趣的超收敛结果。

项目成果

期刊论文数量(70)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
N. Matsunaga: "Convergence of Swartztrauber-Sweet's appronimation for the Poisson-type equation on a disk"Numerical Functional Analysis and Optimization. 20. 917-928 (1999)
N. Matsunaga:“盘上泊松型方程的 Swartztrauber-Sweet 近似的收敛性”数值泛函分析和优化。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T. Yamamoto: "Superconvergence and nonsuperconvergence of the Shortley-Weller qppronimations for Dirichlet problems"Numerical Functionla Analysis and Optimization. 22. 455-470 (2001)
T. Yamamoto:“狄利克雷问题的 Shortley-Weller qpronimations 的超收敛和非超收敛”数值函数分析和优化。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
K. Yoshida: "Recovered derivatives for the Shortley-Welley finite difference appronimation"Information. 4. 267-277 (2001)
K. Yoshida:“Shortley-Welley 有限差分近似的恢复导数”信息。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Q.Fang: "Superconvergence of finite difference approximations for convection-diffusion problem"Numerical Linear with Applications. 8(印刷中). (2001)
Q.Fang:“对流扩散问题的有限差分近似的超收敛”《数值线性及其应用》(出版中)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
N. Matsunaga: "Comparison of these finite difference appronimations for Dinichlet problems"Information. 2. 55-64 (1999)
N. Matsunaga:“Dinichlet 问题的这些有限差分近似值的比较”信息。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

YAMAMOTO Tetsuro其他文献

YAMAMOTO Tetsuro的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('YAMAMOTO Tetsuro', 18)}}的其他基金

Studies on the mechanism to gain monocyte chemotactic capacity of ribosomal protein S19 and its role in coagulum resorption.
核糖体蛋白S19获得单核细胞趋化能力的机制及其在凝血吸收中的作用研究。
  • 批准号:
    21590441
  • 财政年份:
    2009
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Role of plasma S19 ribosomal protein in thrombus resorption
血浆S19核糖体蛋白在血栓吸收中的作用
  • 批准号:
    18590374
  • 财政年份:
    2006
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on evaluation of stability of slope holding discontinuous plane causing slope failure
导致边坡失稳的边坡稳定性评价研究
  • 批准号:
    15560427
  • 财政年份:
    2003
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis of CS5 co-receptor molecule that specifically inhibits chemotaxis of polymorphonuclear leukocytes
特异性抑制多形核白细胞趋化性的CS5共受体分子分析
  • 批准号:
    12470058
  • 财政年份:
    2000
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
ELECTROPHY SIOLOGICAL AND MORHPHOLOGICAL STUDIES ON INTERACTION BETWEEN THE CEREBELLAR AND BASAL GANGLIA INPUTS.-ANALYSIS OF INTEGRATION IN THE CEREBRAL CORTEX-
关于小脑和基底神经节输入之间相互作用的电学和形态学研究。-大脑皮层整合分析-
  • 批准号:
    11680806
  • 财政年份:
    1999
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mathematical analysis of linear/nonlinear iterative algorithms including GMRES, SOR, etc.
线性/非线性迭代算法的数学分析,包括GMRES、SOR等。
  • 批准号:
    09640277
  • 财政年份:
    1997
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
S19 RIBOSOMAL PROTEIN DIMER AS MONOCYTE CHEMOTACTIC FACTOR IN CHRONIC INFLAMMATION.
S19 核糖体蛋白二聚体作为慢性炎症中的单核细胞趋化因子。
  • 批准号:
    08457072
  • 财政年份:
    1996
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Studies on the membrane properties of the cat parietal cortical pyramidal neurons concerning motor compensation
猫顶叶皮层锥体神经元运动补偿膜特性的研究
  • 批准号:
    06680808
  • 财政年份:
    1994
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
Studies on The Response and Morphology of The Cortical Neurons using Double Intracellular labeling
双细胞内标记研究皮质神经元的反应和形态
  • 批准号:
    02670048
  • 财政年份:
    1990
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
ROLE OF HAGEMAN FACTOR-KALLIKREIN-KININ SYSTEM IN HOST DEFENCE AGAINST BACTERIAL INFECTIONS.
哈格曼因子-激肽释放酶-激肽系统在宿主防御细菌感染中的作用。
  • 批准号:
    63570167
  • 财政年份:
    1988
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

Development of a Hybrid Stochastic Finite Element Method with Enhanced Versatility for Uncertainty Quantification
开发一种增强通用性的混合随机有限元方法,用于不确定性量化
  • 批准号:
    23K04012
  • 财政年份:
    2023
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Evaluation of component-based finite element method in connection design
连接设计中基于组件的有限元方法的评估
  • 批准号:
    573136-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 4.16万
  • 项目类别:
    University Undergraduate Student Research Awards
Real-time finite element method for interactive design
交互式设计的实时有限元方法
  • 批准号:
    2795756
  • 财政年份:
    2022
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Studentship
Influence line analysis suitable for finite element method: toward improving efficiency of structural design
适用于有限元法的影响线分析:提高结构设计效率
  • 批准号:
    22K04278
  • 财政年份:
    2022
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The High-Order Shifted Boundary Method: A Finite Element Method for Complex Geometries without Boundary-Fitted Grids
高阶移位边界法:一种用于无边界拟合网格的复杂几何形状的有限元方法
  • 批准号:
    2207164
  • 财政年份:
    2022
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Continuing Grant
Analysis of mechanical effect of Hotz plate on maxillary growth in cleft children using finite element method
Hotz钢板对唇裂儿童上颌骨生长力学效应的有限元分析
  • 批准号:
    20K10160
  • 财政年份:
    2020
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A Novel Finite Element Method Toolbox for Interface Phenomena in Plasmonic Structures
用于等离子体结构界面现象的新型有限元方法工具箱
  • 批准号:
    2009366
  • 财政年份:
    2020
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Standard Grant
A Fitted Finite Element Method for the Modeling of Complex Materials
复杂材料建模的拟合有限元方法
  • 批准号:
    2012285
  • 财政年份:
    2020
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Continuing Grant
Long-term structural performance assessment of corroded reinforced concrete structures using an integrated approach of probabilistic and finite element method
使用概率和有限元方法综合方法评估腐蚀钢筋混凝土结构的长期结构性能
  • 批准号:
    19K15078
  • 财政年份:
    2019
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Estimation of properties and yield criterion of wood by utilizing multi-scale finite element method
利用多尺度有限元法估算木材的性能和屈服准则
  • 批准号:
    19K15319
  • 财政年份:
    2019
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了