Nonlinear analysis on Innovation of stochastic processes and random fields

随机过程和随机场创新的非线性分析

基本信息

  • 批准号:
    17540128
  • 负责人:
  • 金额:
    $ 1.22万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2005
  • 资助国家:
    日本
  • 起止时间:
    2005 至 2006
  • 项目状态:
    已结题

项目摘要

The research result of this year involves three topics as are summarized below.1) Innovation approach to stochastic processes.To obtain innovation is one of the best ways to investigate evolutional random complex systems, so that the research of this problem started last year and has been carried over to this year. In the important cases, the innovation is the time derivative of an additive process. Innovation problem has therefore close connections with the Levy decomposition of an additive process. Thus, we have established the system of idealized elemental random variables as the innovation of the given random complex system.2) Fractional power distributions.It has been recognized that fractional power distributions appear in many fields of science and play important roles. For the study of this distribution, I have proposed to embed those distributions into an additive process, so that we can study the reason why such a fractional distribution arises. There are many cases where embedding into a stable process is possible. In those cases, the Levy decomposition of the stable process can be applied and the results tell us hidden statistical properties of the phenomena with fractional power distribution.3) Duality between Gaussian and Poisson noises.Gaussian white noise and Poisson noise can be dealt with in a similar manner on the one hand, but dissimilarity is significant on the other. One of the realizations of dissimilarity can be seen in the duality between the two noises. In connection with the infinite symmetric group, I have given a duality of the two noises.
今年的研究成果涉及三个主题,总结如下。1)随机过程的创新方法。获取创新是研究进化随机复杂系统的最佳途径之一,因此该问题的研究从去年开始,一直延续到今年。在重要的情况下,创新是一个附加过程的时间导数。因此,创新问题与加性过程的列维分解密切相关。因此,我们建立了理想元素随机变量系统,作为对给定随机复杂系统的创新。2)分数功率分布。人们已经认识到,分数功率分布出现在许多科学领域并发挥着重要作用。为了研究这种分布,我建议将这些分布嵌入到一个加性过程中,这样我们就可以研究产生这种分数分布的原因。在许多情况下,嵌入到一个稳定的过程是可能的。在这种情况下,可以应用稳定过程的Levy分解,其结果告诉我们分数阶功率分布现象的隐藏统计性质。3)高斯噪声和泊松噪声的对偶性。一方面,高斯白噪声和泊松噪声可以用相似的方法处理,但另一方面,它们的差异是显著的。从两种噪声的二元性可以看出不同的表现之一。关于无限对称群,我给出了这两种噪声的对偶性。

项目成果

期刊论文数量(25)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
マトロイドにおけるAssmus-Mattsonの定理
拟阵中的 Assmus-Mattson 定理
Structure of Linear process.
线性过程的结构。
On generalized weights for codes over finite rings
有限环上码的广义权重
Second Support Weights for Binary Self-Dual Codes
二进制自对偶码的第二支持权重
An Assmus-Mattson theorem for matroids
拟阵的 Assmus-Mattson 定理
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SI Si其他文献

SI Si的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SI Si', 18)}}的其他基金

Analysis of functionals of stable processes depending on new noise
根据新噪声分析稳定过程的泛函
  • 批准号:
    23540153
  • 财政年份:
    2011
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Generalized functionals of Compound Poisson noise and its applications
复合泊松噪声的广义泛函及其应用
  • 批准号:
    20540128
  • 财政年份:
    2008
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Variations of random fields and application to computation
随机场的变化及其在计算中的应用
  • 批准号:
    12640136
  • 财政年份:
    2000
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Stochastic processes in random environments with inhomogeneous scaling limits
具有不均匀缩放限制的随机环境中的随机过程
  • 批准号:
    24K06758
  • 财政年份:
    2024
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Large Graph Limits of Stochastic Processes on Random Graphs
随机图上随机过程的大图极限
  • 批准号:
    EP/Y027795/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Research Grant
Stochastic processes on random graphs with clustering
具有聚类的随机图上的随机过程
  • 批准号:
    EP/W033585/1
  • 财政年份:
    2023
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Research Grant
Conference: Seminar on Stochastic Processes 2023
会议:随机过程研讨会 2023
  • 批准号:
    2244835
  • 财政年份:
    2023
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Standard Grant
Random functions and stochastic processes on random graphs
随机图上的随机函数和随机过程
  • 批准号:
    2246575
  • 财政年份:
    2023
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Standard Grant
Stochastic processes in sub-Riemannian geometry
亚黎曼几何中的随机过程
  • 批准号:
    2246817
  • 财政年份:
    2023
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Standard Grant
Optimal Transport of Stochastic Processes in Mathematical Finance
数学金融中随机过程的最优传输
  • 批准号:
    2345556
  • 财政年份:
    2023
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Continuing Grant
Seminar on Stochastic Processes 2022
随机过程研讨会 2022
  • 批准号:
    2151258
  • 财政年份:
    2022
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Standard Grant
Network Stochastic Processes and Time Series (NeST)
网络随机过程和时间序列 (NeST)
  • 批准号:
    EP/X002195/1
  • 财政年份:
    2022
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Research Grant
Analysis, geometry and their interplays on fractals and stochastic processes on them
分形及其随机过程的分析、几何及其相互作用
  • 批准号:
    22H01128
  • 财政年份:
    2022
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了