Information Technoloy for Gene Network Analysis
基因网络分析信息技术
基本信息
- 批准号:15014205
- 负责人:
- 金额:$ 20.48万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research on Priority Areas
- 财政年份:2003
- 资助国家:日本
- 起止时间:2003 至 2004
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We developed information technology for estimating gene networks accurately from multiple source of genetic information including microarray gene expression data. We also developed an XML format for describing dynamic models of gene networks. The following results are obtained:(1)We developed a computational method for estimating gene networks from microarray data obtained from various perturbations such as gene disruptions, gene overexpressions, drug responses, etc. The method combines the Bayesian network approach with nonparametric regression, where genes are regarded as random variables and the nonparametric regression enables us to capture from linear to nonlinear structures between genes. As a criterion for choosing good networks, we introduced the BNRC (Bayesian network and Nonparametric Regression Criterion) score. Naturally, the sole use of microarray data has limitations on gene network estimation. For improving the biological accuracy of estimated gene networks, we have made … More a general framework by extending this method so that it can employ genome-wide other biological information such as sequence information on promoter regions, protein-protein interactions. Computational experiments were conducted with yeast data and they show that cascades of gene regulations were effectively extracted.(2)The problem of finding an optimal Bayesian network is known computationally intractable for BNRC, BDe, MDL scores. For example, in order to find an optimal Bayesian network of 20 genes from 100 microarray data, the brute force algorithm employing all computing resources in the world even requires the time exceeding the life time of the solar system. Our recent computational challenge has made possible to search and enumerate optimal and suboptimal Bayesian networks in feasible time on supercomputers. Computational experiments with this search algorithm have provided evidences of the biological rationality of our computational strategy We obtained the following scientific knowledge: (i) Optimal Bayesian networks do not necessarily reflect the most accurate biological knowledge. (ii) Gene・gene relations which appear very frequently in optimal and suboptimal networks are biologically very likely. (iii) BNRC score is much better than BDe and MDL scores for gene network estimation. Furthermore, by putting constraints arising from biological knowledge, a faster algorithm is also developed.(3)We designed and developed an XML called CSML Version 1.0 (Cell System ML) for describing and simulating dynamic models of gene networks. Based on this, we developed programs which automatical convert pathway models in KEGG and BioCyc to CSML models so that dynamic models can be constructed. Cell Illustrator is used for modeling and simulation of the models which employs CSML for model description. This framework enables us to develope large-scale metabolic pathway models for simulation. Less
我们开发了从包括微阵列基因表达数据在内的多种遗传信息来源准确估计基因网络的信息技术。我们还开发了一种用于描述基因网络动态模型的XML格式。(1)发展了一种从基因干扰、基因过度表达、药物反应等各种扰动下获得的微阵列数据估计基因网络的计算方法,该方法将贝叶斯网络方法与非参数回归相结合,其中基因被视为随机变量,非参数回归使我们能够捕捉基因之间从线性到非线性的结构。作为选择好网络的标准,我们引入了贝叶斯网络和非参数回归准则(BNRC)得分。自然,单独使用微阵列数据在基因网络估计方面有局限性。为了提高估计基因网络的生物学准确性,我们制作了…通过扩展该方法以使其能够利用基因组范围内的其他生物信息,例如启动子区域的序列信息、蛋白质-蛋白质相互作用。使用酵母数据进行了计算实验,结果表明,该方法能够有效地提取基因调控的级联。(2)对于BNRC、BDE、MDL分数,寻找最优贝叶斯网络的问题是众所周知的计算难题。例如,为了从100个微阵列数据中找到一个由20个基因组成的最优贝叶斯网络,使用世界上所有计算资源的蛮力算法甚至需要超过太阳系寿命的时间。我们最近的计算挑战使得在可行的时间内在超级计算机上搜索和列举最优和次优贝叶斯网络成为可能。用这种搜索算法进行的计算实验证明了我们的计算策略的生物合理性。我们获得了以下科学知识:(I)最优贝叶斯网络不一定反映最准确的生物知识。(Ii)在最优和次优网络中经常出现的基因·基因关系在生物学上是非常可能的。(3)对于基因网络的估计,BNRC评分明显优于BDE和MDL评分。设计并开发了一个用于描述和模拟基因网络动态模型的可扩展标记语言CSML Version 1.0(Cell System ML)。在此基础上,我们开发了将KEGG和BioCyc中的通路模型自动转换为CSML模型的程序,从而可以构建动态模型。使用Cell Illustrator对模型进行建模和仿真,并使用CSML进行模型描述。这一框架使我们能够开发用于模拟的大规模代谢途径模型。较少
项目成果
期刊论文数量(60)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Using Protein-Protein Interactions for Refining Gene Networks Estimated from Microarray Data by Bayesian Networks
- DOI:10.1142/9789812704856_0032
- 发表时间:2003-12
- 期刊:
- 影响因子:0
- 作者:Naoki Nariai;SunYong Kim;S. Imoto;S. Miyano
- 通讯作者:Naoki Nariai;SunYong Kim;S. Imoto;S. Miyano
Inferring Gene Regulatory Networks from Time-Ordered Gene Expression Data of Bacillus Subtilis Using Differential Equations
- DOI:10.1142/9789812776303_0003
- 发表时间:2002-12
- 期刊:
- 影响因子:0
- 作者:M. Hoon;S. Imoto;Kazuo Kobayashi;N. Ogasawara;Satoru Miyano
- 通讯作者:M. Hoon;S. Imoto;Kazuo Kobayashi;N. Ogasawara;Satoru Miyano
Dynamic Bayesian Network and Nonparametric Regression for Nonlinear Modeling of Gene Networks from Time Series Gene Expression Data
- DOI:10.1007/3-540-36481-1_9
- 发表时间:2003-02
- 期刊:
- 影响因子:0
- 作者:SunYong Kim;S. Imoto;S. Miyano
- 通讯作者:SunYong Kim;S. Imoto;S. Miyano
An 0(N^2) algorithm for discovering optimal Boolean pattern pairs
用于发现最佳布尔模式对的 0(N^2) 算法
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:Bannai;H.
- 通讯作者:H.
XML pathway file conversion between Genomic Object Net and SBML
Genomic Object Net 和 SBML 之间的 XML 路径文件转换
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:Nakano;M.;Noda;R.;Kitakaze;H.;Matsuno;H.;Miyano;S.
- 通讯作者:S.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MIYANO Satoru其他文献
MIYANO Satoru的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MIYANO Satoru', 18)}}的其他基金
Drug-response pathway analysis methods based on network analysis
基于网络分析的药物反应通路分析方法
- 批准号:
22300099 - 财政年份:2010
- 资助金额:
$ 20.48万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
In Silico Search for Drug Target Pathways by Gene Networks
通过基因网络在计算机上搜索药物靶标途径
- 批准号:
18300097 - 财政年份:2006
- 资助金额:
$ 20.48万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Estimation and simulation of gene networks for developing in silico biological networks
用于计算机生物网络开发的基因网络的估计和模拟
- 批准号:
17017008 - 财政年份:2005
- 资助金额:
$ 20.48万 - 项目类别:
Grant-in-Aid for Scientific Research on Priority Areas
Information Scientific Foundations of Knowledge Discovery from Proteome Data
从蛋白质组数据发现知识的信息科学基础
- 批准号:
15300099 - 财政年份:2003
- 资助金额:
$ 20.48万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Foundations of Computational Knowledge Discovery from cDNA Microarray Data
从 cDNA 微阵列数据发现计算知识的基础
- 批准号:
12480080 - 财政年份:2000
- 资助金额:
$ 20.48万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Knowledge Discovery in Databases
数据库中的知识发现
- 批准号:
10143102 - 财政年份:1998
- 资助金额:
$ 20.48万 - 项目类别:
Grant-in-Aid for Scientific Research on Priority Areas (A)
Development of Data Mining System Using Binary Decision Diagrams for Knowledge Representation
使用二元决策图进行知识表示的数据挖掘系统的开发
- 批准号:
09558032 - 财政年份:1997
- 资助金额:
$ 20.48万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of Parallel Knowledge Acquisition System
并行知识获取系统的开发
- 批准号:
06558047 - 财政年份:1994
- 资助金额:
$ 20.48万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
STUDY ON EFFICIENT SEARCH ALGORITHMS
高效搜索算法研究
- 批准号:
06680326 - 财政年份:1994
- 资助金额:
$ 20.48万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
Algorithmic research on computational learning and teaching
计算学习与教学的算法研究
- 批准号:
02680031 - 财政年份:1990
- 资助金额:
$ 20.48万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
A methodology for quantitative failure risk analysis using physical modeling and Bayesian network
使用物理建模和贝叶斯网络进行定量故障风险分析的方法
- 批准号:
23K13522 - 财政年份:2023
- 资助金额:
$ 20.48万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Investigating Novel Priors in Bayesian Network Meta-Analysis
研究贝叶斯网络元分析中的新先验
- 批准号:
569445-2022 - 财政年份:2022
- 资助金额:
$ 20.48万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Integrated IoT Sensing and Edge Computing Coupled with a Bayesian Network Model for Exposure Assessment and Targeted Remediation of Vapor Intrusion
集成物联网传感和边缘计算与贝叶斯网络模型相结合,用于暴露评估和蒸汽入侵的针对性修复
- 批准号:
10700801 - 财政年份:2022
- 资助金额:
$ 20.48万 - 项目类别:
Integrated IoT Sensing and Edge Computing Coupled with a Bayesian Network Model for Exposure Assessment and Targeted Remediation of Vapor Intrusion
集成物联网传感和边缘计算与贝叶斯网络模型相结合,用于暴露评估和蒸汽入侵的针对性修复
- 批准号:
10352963 - 财政年份:2022
- 资助金额:
$ 20.48万 - 项目类别:
CRII: FET: Quantum Bayesian network simulation through efficient representation, transpilation, and uncertainty quantification
CRII:FET:通过高效表示、转换和不确定性量化进行量子贝叶斯网络模拟
- 批准号:
2105342 - 财政年份:2021
- 资助金额:
$ 20.48万 - 项目类别:
Standard Grant
Dynamic risk assessment of hazardous process operations using the long short-term memory (LSTM) neural network and Bayesian network (BN)
使用长短期记忆(LSTM)神经网络和贝叶斯网络(BN)对危险过程操作进行动态风险评估
- 批准号:
547892-2020 - 财政年份:2021
- 资助金额:
$ 20.48万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Bayesian Network-Based Integrative Genomics Methods for Precision Medicine
基于贝叶斯网络的精准医学综合基因组学方法
- 批准号:
10577871 - 财政年份:2021
- 资助金额:
$ 20.48万 - 项目类别:
Bayesian network models of political polarisation
政治极化的贝叶斯网络模型
- 批准号:
2427544 - 财政年份:2020
- 资助金额:
$ 20.48万 - 项目类别:
Studentship
Scalable Bayesian Network analysis of multimodal FACS and SUMOylation data, with generalization to other big mixed biological datasets
多模式 FACS 和 SUMOylation 数据的可扩展贝叶斯网络分析,并推广到其他大型混合生物数据集
- 批准号:
10359178 - 财政年份:2020
- 资助金额:
$ 20.48万 - 项目类别:
Applying, developing and evaluating Bayesian Network structure learning algorithms to complex real-world datasets .
将贝叶斯网络结构学习算法应用、开发和评估到复杂的现实世界数据集。
- 批准号:
2441682 - 财政年份:2020
- 资助金额:
$ 20.48万 - 项目类别:
Studentship