Information Scientific Foundations of Knowledge Discovery from Proteome Data

从蛋白质组数据发现知识的信息科学基础

基本信息

  • 批准号:
    15300099
  • 负责人:
  • 金额:
    $ 10.56万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    2003
  • 资助国家:
    日本
  • 起止时间:
    2003 至 2005
  • 项目状态:
    已结题

项目摘要

This research developed information scientific foundations of computational knowledge discovery from proteome data which came out from the genome-wide analysis of proteins and their related information. Our contributions are classified in two subjects :1.Inferrining protein networksWe developed a statistical and computational method for inferring and estimating gene networks by using microarray gene expression data and protein-protein interaction data. This method uses a Bayesian network method combined with nonparametric regression which employs protein-protein interaction information obtained by Y2H and MS as its prior. We also developed a computational method for estimating protein complexes by applying the principal component analysis to microarray gene expression data. Further, we constructed a model which combines Bayesian networks for gene regulatory networks and Markov networks for protein networks. With this model, more accurate protein networks can be estimated from protein-protein interaction information and microarray gene expression data.2.Computational method for pathway modeling and simulationWe defined a new basic architecture called Hybrid Functional Petri Net with extension on which a new software tool for pathway modeling and simulation was developed. This architecture allows us to use protein subcellular localization information and protein modification information in pathway modeling. By using the literature and attached data, we constructed models of pathways including protein networks with the software tool. We interpreted and evaluated these models and demonstrated the effectiveness of this method through modeling of a apoptosis signaling pathway, a cell cycle pathway model of fission yeast, and a network around p53.
该研究为利用蛋白质组数据进行计算知识发现提供了信息科学基础,这些数据来源于全基因组蛋白质及其相关信息的分析。我们的贡献分为两个主题:1。推断蛋白质网络我们开发了一种统计和计算方法,通过使用微阵列基因表达数据和蛋白质-蛋白质相互作用数据来推断和估计基因网络。该方法采用贝叶斯网络和非参数回归相结合的方法,以Y2H和MS得到的蛋白-蛋白相互作用信息作为先验。我们还开发了一种计算方法,通过将主成分分析应用于微阵列基因表达数据来估计蛋白质复合物。此外,我们构建了一个基因调控网络的贝叶斯网络和蛋白质网络的马尔可夫网络相结合的模型。利用该模型,可以从蛋白质-蛋白质相互作用信息和微阵列基因表达数据中估计出更准确的蛋白质网络。路径建模与仿真的计算方法我们定义了一种新的基本体系结构,称为混合函数Petri网,并在此基础上扩展开发了一种新的路径建模与仿真软件工具。这种结构允许我们在通路建模中使用蛋白质亚细胞定位信息和蛋白质修饰信息。利用文献资料和随附数据,我们利用软件工具构建了包括蛋白质网络在内的通路模型。我们对这些模型进行了解释和评估,并通过对细胞凋亡信号通路、分裂酵母细胞周期通路模型和p53周围网络的建模证明了该方法的有效性。

项目成果

期刊论文数量(40)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Modeling and simulation of fission yeast cell cycle on hybrid functional Petri net
混合功能Petri网上裂殖酵母细胞周期的建模与模拟
Efficiently finding regulatory elements using correlation with gene expression
利用与基因表达的相关性有效地寻找调控元件
Constructing biological pathway models with hybrid functional Petri nets
使用混合功能 Petri 网构建生物途径模型
A neural network method for identification of RNA-interacting residues in protein.
Bioinformatics Technologies (Y.P. Chen, ed.) ISBN : 3-540-20873-9
生物信息学技术(Y.P. Chen 编辑)ISBN : 3-540-20873-9
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nagasaki;M.;Doi;A.;Matsuno;H.;Miyano;S.
  • 通讯作者:
    S.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MIYANO Satoru其他文献

MIYANO Satoru的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MIYANO Satoru', 18)}}的其他基金

Drug-response pathway analysis methods based on network analysis
基于网络分析的药物反应通路分析方法
  • 批准号:
    22300099
  • 财政年份:
    2010
  • 资助金额:
    $ 10.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
In Silico Search for Drug Target Pathways by Gene Networks
通过基因网络在计算机上搜索药物靶标途径
  • 批准号:
    18300097
  • 财政年份:
    2006
  • 资助金额:
    $ 10.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Estimation and simulation of gene networks for developing in silico biological networks
用于计算机生物网络开发的基因网络的估计和模拟
  • 批准号:
    17017008
  • 财政年份:
    2005
  • 资助金额:
    $ 10.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
Information Technoloy for Gene Network Analysis
基因网络分析信息技术
  • 批准号:
    15014205
  • 财政年份:
    2003
  • 资助金额:
    $ 10.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
Foundations of Computational Knowledge Discovery from cDNA Microarray Data
从 cDNA 微阵列数据发现计算知识的基础
  • 批准号:
    12480080
  • 财政年份:
    2000
  • 资助金额:
    $ 10.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Knowledge Discovery in Databases
数据库中的知识发现
  • 批准号:
    10143102
  • 财政年份:
    1998
  • 资助金额:
    $ 10.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas (A)
Development of Data Mining System Using Binary Decision Diagrams for Knowledge Representation
使用二元决策图进行知识表示的数据挖掘系统的开发
  • 批准号:
    09558032
  • 财政年份:
    1997
  • 资助金额:
    $ 10.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of Parallel Knowledge Acquisition System
并行知识获取系统的开发
  • 批准号:
    06558047
  • 财政年份:
    1994
  • 资助金额:
    $ 10.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
STUDY ON EFFICIENT SEARCH ALGORITHMS
高效搜索算法研究
  • 批准号:
    06680326
  • 财政年份:
    1994
  • 资助金额:
    $ 10.56万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
Algorithmic research on computational learning and teaching
计算学习与教学的算法研究
  • 批准号:
    02680031
  • 财政年份:
    1990
  • 资助金额:
    $ 10.56万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

A Gene-Network Discovery Approach to Structural Brain Disorders
结构性脑疾病的基因网络发现方法
  • 批准号:
    10734863
  • 财政年份:
    2023
  • 资助金额:
    $ 10.56万
  • 项目类别:
Development of RNA dynamics recording and study of RNA mediated regulatory gene network
RNA动态记录的发展和RNA介导的调控基因网络的研究
  • 批准号:
    23K18108
  • 财政年份:
    2023
  • 资助金额:
    $ 10.56万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Sequence-based Machine Learning for Inference of Dynamic Cell State Gene Network Models
基于序列的机器学习用于动态细胞状态基因网络模型的推理
  • 批准号:
    10665735
  • 财政年份:
    2022
  • 资助金额:
    $ 10.56万
  • 项目类别:
Develop explainable AI strategies for uncovering molecular mechanism behind disease based on gene network analysis
基于基因网络分析,开发可解释的人工智能策略,揭示疾病背后的分子机制
  • 批准号:
    22K12259
  • 财政年份:
    2022
  • 资助金额:
    $ 10.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Multi-omics Gene Network Identification (Project 4)
多组学基因网络识别(项目4)
  • 批准号:
    10493708
  • 财政年份:
    2022
  • 资助金额:
    $ 10.56万
  • 项目类别:
Analysis of gene network Regulating initial sexual differentiation of quail primordial germ cells
鹌鹑原始生殖细胞初始性分化调控基因网络分析
  • 批准号:
    22K05949
  • 财政年份:
    2022
  • 资助金额:
    $ 10.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Constructions of data analysis scheme by gene-network approaches for non-model origanism
非模式生物基因网络数据分析方案的构建
  • 批准号:
    21K19126
  • 财政年份:
    2021
  • 资助金额:
    $ 10.56万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Deciphering the Genomics of Gene Network Regulation of T Cell and Fibroblast States in Autoimmune Inflammation
破译自身免疫炎症中 T 细胞和成纤维细胞状态的基因网络调控的基因组学
  • 批准号:
    10305241
  • 财政年份:
    2021
  • 资助金额:
    $ 10.56万
  • 项目类别:
Deciphering the Genomics of Gene Network Regulation of T Cell and Fibroblast States in Autoimmune Inflammation
破译自身免疫炎症中 T 细胞和成纤维细胞状态的基因网络调控的基因组学
  • 批准号:
    10472615
  • 财政年份:
    2021
  • 资助金额:
    $ 10.56万
  • 项目类别:
Integration of Feeding Time and Glucose Metabolism by the Circadian Gene Network
昼夜节律基因网络整合进食时间和葡萄糖代谢
  • 批准号:
    10490335
  • 财政年份:
    2021
  • 资助金额:
    $ 10.56万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了