正則2次微分とタイヒミュラー空間

正则二阶导数和 Teichmuller 空间

基本信息

  • 批准号:
    09874035
  • 负责人:
  • 金额:
    $ 0.83万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Exploratory Research
  • 财政年份:
    1997
  • 资助国家:
    日本
  • 起止时间:
    1997 至 1998
  • 项目状态:
    已结题

项目摘要

研究代表者は、リーマン面の間の調和写像が正則になるための必要十分条件を求めた。それは「双曲型の閉リーマン面間の定数でない写像が正則、または反正則になるための必要十分条件はPoincare計量とBergman計量の両方に関して調和である」ことである。証明のアイディアは、調和写像の特徴付けを正則2次微分に関連させれことにある。リーマン面の正則族のモノドロミーの元は、写像類群の元であるが、それはタイヒミュラー・モデュラー群の元とも見なすことができる。その元のタイプをNielsen-Thuston-Bersの観点から、タイヒミュラー空間と双曲幾何の手法を用いて分類することを研究した。特に、この正則族が小平曲面から定まるものであるとき、その分類を完全に行うことができた。この研究成果は、1999年3月の日本数学会年会で発表の予定である。また、その論文を執筆中である。小森は、1次元タイヒミュラー空間のRiley sliceとEarle sliceの形状を詳細に考察した。佐官は単位円周上の位相写像を単位円板内に複素数値の調和関数によって拡張したとき、それが擬等角写像になるかどうかの研究を行った。西尾は熱方程式との関連で多重温度と云う概念を導入し。その平均値の性質を考察した。さらに,研究分担者達によって、上記の内容に直積的あるいは間接的に関係する形でタイヒミュラー空間,擬等角写像,ポテンシャル論,結び目理論、微分幾何、確率過程、エルゴード理論などに関して多くの成果が得られた。
The research representative asks for the necessary conditions for the regular writing of images The necessary conditions for the hyperbolic model to be closed and the plane to be closed are: regularity, regularity, Bergman's metrology, and harmony. It is proved that the characteristic of harmonic image is regular quadratic differential correlation. The elements of the regular family of the plane, the elements of the image group, and the elements of the image group. A study on the classification of Nielsen-Thuston-Bers spatial hyperbolic geometry Special, regular families of small flat surfaces, fixed, classified, complete The results of this research were presented at the annual meeting of the Japanese Mathematical Society in March 1999.また、その论文を执笔中である。The shape of Riley slice and Earle slice in 1-dimensional space is examined in detail. A study on the harmonic relationship between complex prime numbers and pseudo-equiangular images in a single circle The concept of multi-temperature cloud is introduced. The nature of the average is investigated. In this paper, the author studies the direct product and indirect relationship of the content, the shape of the space, the quasi-equiangular image, the theory of the structure, the differential geometry, the exact process, and the theory of the structure.

项目成果

期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
小森洋平: "Monotonicity of entropy for some real quadictic rational maps" Science Bulletin of Josai Univ.1. 115-126 (1997)
小森洋平:“一些实二次有理图的熵的单调性”城西大学科学通报115-126(1997)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Shin Kato: "Uniqneness of solutions of an elliptic singular bandary value problem" Osaka Math.J.35. 279-302 (1998)
Shin Kato:“椭圆奇异带值问题解的唯一性”Osaka Math.J.35。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
今吉洋一: "An estimate of number of non-constant holomorphic maps between Riemann surfaces" Topology and Teichmiller Spaces. 57-78 (1996)
Yoichi Imayoshi:“黎曼曲面之间非恒定全纯映射数量的估计”拓扑和 Teichmiller 空间 57-78 (1996)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
今吉洋一: "複素関数 概説" サイエンス社, 195 (1997)
Yoichi Imayoshi:“复杂函数概述”科学出版社,195(1997)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Yohei Komori: "The Riley slice revised" Geomity & Topology Monograph. 1. 303-316 (1998)
小森洋平:“莱利切片修订版”Geomity
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

今吉 洋一其他文献

Complex Analysis and its applications
复分析及其应用
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M.Nishio;M.Yamada;Y.Imayoshi;J.Noguchi;H.Shiga;A.Kodama;S.Kato;M.Nishio;M.Nishio;児玉 秋雄;西尾 昌治;志賀 啓成;野口 潤次郎;河内 明夫;松本 幸夫;足利 正;今吉 洋一;野口 潤次郎;西尾 昌治;金信 泰造;児玉 秋雄;小森 洋平;加藤 信;佐官 謙一;西尾 昌治;佐官 謙一;小森 洋平;河内 明夫;今吉 洋一;志賀 啓成;足利 正;今吉 洋一
  • 通讯作者:
    今吉 洋一
Fortsetzungen einer Riemannschen Flaeche und eine Verallgemainerung der Poiseuille- Stroemung
黎曼闪光的Fortsetzungen einer Riemannschen Flaeche and eine Verallgemainerung der Poiseuille-Stroemung
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Nishio;N. Suzuki;M. Yamada;今吉 洋一;Masakazu Shiba
  • 通讯作者:
    Masakazu Shiba
Boundary properties of quasiconformal harmonic mappings
拟共形调和映射的边界性质
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M.Nishio;M.Yamada;Y.Imayoshi;J.Noguchi;H.Shiga;A.Kodama;S.Kato;M.Nishio;M.Nishio;児玉 秋雄;西尾 昌治;志賀 啓成;野口 潤次郎;河内 明夫;松本 幸夫;足利 正;今吉 洋一;野口 潤次郎;西尾 昌治;金信 泰造;児玉 秋雄;小森 洋平;加藤 信;佐官 謙一
  • 通讯作者:
    佐官 謙一
Toeplitz operators of Schatten class on parabolic Bergmans spaces
抛物线伯格曼空间上的 Schatten 类 Toeplitz 算子
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M.Nishio;M.Yamada;Y.Imayoshi;J.Noguchi;H.Shiga;A.Kodama;S.Kato;M.Nishio;M.Nishio;児玉 秋雄;西尾 昌治;志賀 啓成;野口 潤次郎;河内 明夫;松本 幸夫;足利 正;今吉 洋一;野口 潤次郎;西尾 昌治
  • 通讯作者:
    西尾 昌治
Klein群の不変成分のRiemann mapについて
关于克莱因群不变分量的黎曼图
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M.Nishio;M.Yamada;Y.Imayoshi;J.Noguchi;H.Shiga;A.Kodama;S.Kato;M.Nishio;M.Nishio;児玉 秋雄;西尾 昌治;志賀 啓成;野口 潤次郎;河内 明夫;松本 幸夫;足利 正;今吉 洋一;野口 潤次郎;西尾 昌治;金信 泰造;児玉 秋雄;小森 洋平;加藤 信;佐官 謙一;西尾 昌治;佐官 謙一;小森 洋平;河内 明夫;今吉 洋一;志賀 啓成
  • 通讯作者:
    志賀 啓成

今吉 洋一的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('今吉 洋一', 18)}}的其他基金

リーマン面の正則族の大域的構成法の種々の試み
黎曼曲面正则族全局构造方法的各种尝试
  • 批准号:
    18654030
  • 财政年份:
    2006
  • 资助金额:
    $ 0.83万
  • 项目类别:
    Grant-in-Aid for Exploratory Research
リーマン面の正則族のモノドロミーの大域的研究
黎曼曲面正则族单一性的全局研究
  • 批准号:
    13874025
  • 财政年份:
    2001
  • 资助金额:
    $ 0.83万
  • 项目类别:
    Grant-in-Aid for Exploratory Research
タイヒミュラー空間とその応用
Teichmuller空间及其应用
  • 批准号:
    08640227
  • 财政年份:
    1996
  • 资助金额:
    $ 0.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
リーマン面の正則族とタイヒミュラー空間
黎曼曲面正则族和 Teichmuller 空间
  • 批准号:
    07210270
  • 财政年份:
    1995
  • 资助金额:
    $ 0.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
タイヒミュラー空間とその応用
Teichmuller空间及其应用
  • 批准号:
    06640260
  • 财政年份:
    1994
  • 资助金额:
    $ 0.83万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
タイヒミュラー空間論とその応用
Teichmuller空间理论及其应用
  • 批准号:
    63540120
  • 财政年份:
    1988
  • 资助金额:
    $ 0.83万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
Riemann 面の正則族と Teichmiillen 空間, およびそれらの応用
黎曼曲面的正则族、Teichmiillen 空间及其应用
  • 批准号:
    56740072
  • 财政年份:
    1981
  • 资助金额:
    $ 0.83万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)

相似海外基金

A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    $ 0.83万
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    $ 0.83万
  • 项目类别:
    Studentship
Development of a new solid tritium breeder blanket
新型固体氚增殖毯的研制
  • 批准号:
    2908923
  • 财政年份:
    2027
  • 资助金额:
    $ 0.83万
  • 项目类别:
    Studentship
A Pathway to the Confirmation and Characterisation of Habitable Alien Worlds
确认和描述宜居外星世界的途径
  • 批准号:
    MR/Y011759/1
  • 财政年份:
    2025
  • 资助金额:
    $ 0.83万
  • 项目类别:
    Fellowship
How can we make use of one or more computationally powerful virtual robots, to create a hive mind network to better coordinate multi-robot teams?
我们如何利用一个或多个计算能力强大的虚拟机器人来创建蜂巢思维网络,以更好地协调多机器人团队?
  • 批准号:
    2594635
  • 财政年份:
    2025
  • 资助金额:
    $ 0.83万
  • 项目类别:
    Studentship
Understanding The Political Representation of Men: A Novel Approach to Making Politics More Inclusive
了解男性的政治代表性:使政治更具包容性的新方法
  • 批准号:
    EP/Z000246/1
  • 财政年份:
    2025
  • 资助金额:
    $ 0.83万
  • 项目类别:
    Research Grant
The efficacy of a computing-concepts video library for students and peer tutors in multidisciplinary contexts
计算概念视频库在多学科背景下对学生和同伴导师的功效
  • 批准号:
    2337253
  • 财政年份:
    2024
  • 资助金额:
    $ 0.83万
  • 项目类别:
    Standard Grant
CAREER: A cortex-basal forebrain loop enabling task-specific cognitive behavior
职业:皮层基底前脑环路实现特定任务的认知行为
  • 批准号:
    2337351
  • 财政年份:
    2024
  • 资助金额:
    $ 0.83万
  • 项目类别:
    Continuing Grant
CAREER: Origami-inspired design for a tissue engineered heart valve
职业:受折纸启发的组织工程心脏瓣膜设计
  • 批准号:
    2337540
  • 财政年份:
    2024
  • 资助金额:
    $ 0.83万
  • 项目类别:
    Continuing Grant
Doctoral Dissertation Research: Aspect and Event Cognition in the Acquisition and Processing of a Second Language
博士论文研究:第二语言习得和处理中的方面和事件认知
  • 批准号:
    2337763
  • 财政年份:
    2024
  • 资助金额:
    $ 0.83万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了