タイヒミュラー空間とその応用
Teichmuller空间及其应用
基本信息
- 批准号:08640227
- 负责人:
- 金额:$ 1.54万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1996
- 资助国家:日本
- 起止时间:1996 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
研究代表者はタイヒミュラー空間論,クライン群,複素解析,および双曲三角法を応用して、種数2以上のコンパクトなリーマン面の非定数正則写像の個数を具体的に評価した。この方法は,コンパクトでない双曲的なリーマン面の間の非定数正則写像の個数評価にも適用可能であり,その研究成果を執筆中である.この研究はSeveriの定理,リーマン面の正則族、代数関数体におけるGrauert・Maninの定理やParshin・Arakerovの定理との関連も含めて今後さらに続けられる予定である.小森は,タイヒミュラー空間論を応用して,実3次写像の位相的エントロピーの単調性を証明した.これは,ミルナ-の実2次写像の場合の研究を発展させるものである.佐官は単位円周上の位相写像を単位円板内に複素数値の調和関数によって拡張したとき,それが擬等角写像になるかどうかの研究を行った.これは,タイヒミュラー空間を単位円周上の写像でとらえる観点に関連するものである.西尾は,熱方程式との関連で多重温度と言う概念を導入し,その平均値の性質を考察した.また研究分担者達によって、上記の内容に直積的あるいは間接的に関係する形でタイヒミュラー空間,擬等角写像,ポテンシャル論,トポロジー,確率過程,エルゴード理論,偏微分方程式などに関して多くの成果が得られた.
The representative of the research is the space theory, the group, the complex element analysis, the hyperbolic trigonometry, the number of non-fixed number regular images of the surface, and the number of non-fixed number regular images. This method is applicable to the evaluation of the number of irregular regular images in the space between hyperbolic curves, and the research results are in writing. This paper studies Severi's theorem, regular families of planes, algebraic relational bodies, Grauert Manin's theorem, Parshin Arakerov's theorem and their relations, including the future. Komori, the first time the space theory is used, the third time the phase of the image is written, the first time the space theory is used. The research on the second time image writing was carried out. A study on the harmonic relations between complex prime numbers and quasi-equiangular images in a single circle. This is the first time I've ever seen a picture of myself in a single space. The concept of multiple temperature is introduced into the equation of heat transfer, and the properties of the average temperature are investigated. In this paper, the author studies the direct product of the content of the above record, the indirect relationship between the form of space, the pseudo-equiangular image, the problem theory, the problem theory, the accurate process, the theory of partial differential equations, and the results of many related problems.
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Y.Komori: "On the monotonicity of topological entropy for bimodal real cubicmaps" 数理解析研究所講究録. 938. 26-33 (1996)
Y. Komori:“关于双峰实立方图的拓扑熵的单调性”数学科学研究所 Kokyuroku。 938. 26-33 (1996)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K.Sakan: "Harmonic and quasiconformal mapping which agree on the foundary" Ann.Univ.Marie Curie-Sklodowska. 49. 159-171 (1995)
K.Sakan:“在基础上一致的调和和拟共形映射”Ann.Univ.Marie Curie-Sklodowska。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M. Nishio: "A mean value property of poly-temperatures on a strip domain" J. London Math. Soc.(to appear).
M. Nishio:“带状域上多温度的平均值属性”J. London Math。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Y.Imayoshi: "An eotim ate of the number of non-constant holomorphic maps between Riemann surfaces" Topology and Teichmuller Spaces, World Scientific. 57-78 (1996)
Y.Imayoshi:“黎曼曲面之间非恒定全纯映射数量的估计”拓扑和 Teichmuller 空间,世界科学。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Y.Komori: "On the dynamics of bimodal real wbic maps" 数理解析研究所講究録. 959. 84-89 (1996)
Y. Komori:“关于双峰实 wbic 映射的动力学”数学科学研究所 Kokyuroku。959. 84-89 (1996)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
今吉 洋一其他文献
Complex Analysis and its applications
复分析及其应用
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
M.Nishio;M.Yamada;Y.Imayoshi;J.Noguchi;H.Shiga;A.Kodama;S.Kato;M.Nishio;M.Nishio;児玉 秋雄;西尾 昌治;志賀 啓成;野口 潤次郎;河内 明夫;松本 幸夫;足利 正;今吉 洋一;野口 潤次郎;西尾 昌治;金信 泰造;児玉 秋雄;小森 洋平;加藤 信;佐官 謙一;西尾 昌治;佐官 謙一;小森 洋平;河内 明夫;今吉 洋一;志賀 啓成;足利 正;今吉 洋一 - 通讯作者:
今吉 洋一
Fortsetzungen einer Riemannschen Flaeche und eine Verallgemainerung der Poiseuille- Stroemung
黎曼闪光的Fortsetzungen einer Riemannschen Flaeche and eine Verallgemainerung der Poiseuille-Stroemung
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
M. Nishio;N. Suzuki;M. Yamada;今吉 洋一;Masakazu Shiba - 通讯作者:
Masakazu Shiba
Boundary properties of quasiconformal harmonic mappings
拟共形调和映射的边界性质
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
M.Nishio;M.Yamada;Y.Imayoshi;J.Noguchi;H.Shiga;A.Kodama;S.Kato;M.Nishio;M.Nishio;児玉 秋雄;西尾 昌治;志賀 啓成;野口 潤次郎;河内 明夫;松本 幸夫;足利 正;今吉 洋一;野口 潤次郎;西尾 昌治;金信 泰造;児玉 秋雄;小森 洋平;加藤 信;佐官 謙一 - 通讯作者:
佐官 謙一
Toeplitz operators of Schatten class on parabolic Bergmans spaces
抛物线伯格曼空间上的 Schatten 类 Toeplitz 算子
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
M.Nishio;M.Yamada;Y.Imayoshi;J.Noguchi;H.Shiga;A.Kodama;S.Kato;M.Nishio;M.Nishio;児玉 秋雄;西尾 昌治;志賀 啓成;野口 潤次郎;河内 明夫;松本 幸夫;足利 正;今吉 洋一;野口 潤次郎;西尾 昌治 - 通讯作者:
西尾 昌治
Klein群の不変成分のRiemann mapについて
关于克莱因群不变分量的黎曼图
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
M.Nishio;M.Yamada;Y.Imayoshi;J.Noguchi;H.Shiga;A.Kodama;S.Kato;M.Nishio;M.Nishio;児玉 秋雄;西尾 昌治;志賀 啓成;野口 潤次郎;河内 明夫;松本 幸夫;足利 正;今吉 洋一;野口 潤次郎;西尾 昌治;金信 泰造;児玉 秋雄;小森 洋平;加藤 信;佐官 謙一;西尾 昌治;佐官 謙一;小森 洋平;河内 明夫;今吉 洋一;志賀 啓成 - 通讯作者:
志賀 啓成
今吉 洋一的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('今吉 洋一', 18)}}的其他基金
リーマン面の正則族の大域的構成法の種々の試み
黎曼曲面正则族全局构造方法的各种尝试
- 批准号:
18654030 - 财政年份:2006
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for Exploratory Research
リーマン面の正則族のモノドロミーの大域的研究
黎曼曲面正则族单一性的全局研究
- 批准号:
13874025 - 财政年份:2001
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for Exploratory Research
正則2次微分とタイヒミュラー空間
正则二阶导数和 Teichmuller 空间
- 批准号:
09874035 - 财政年份:1997
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for Exploratory Research
リーマン面の正則族とタイヒミュラー空間
黎曼曲面正则族和 Teichmuller 空间
- 批准号:
07210270 - 财政年份:1995
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for Scientific Research on Priority Areas
タイヒミュラー空間とその応用
Teichmuller空间及其应用
- 批准号:
06640260 - 财政年份:1994
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
タイヒミュラー空間論とその応用
Teichmuller空间理论及其应用
- 批准号:
63540120 - 财政年份:1988
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
Riemann 面の正則族と Teichmiillen 空間, およびそれらの応用
黎曼曲面的正则族、Teichmiillen 空间及其应用
- 批准号:
56740072 - 财政年份:1981
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
相似海外基金
リーマン面に関連する位相幾何学の代数的展開
与黎曼曲面相关的拓扑的代数展开
- 批准号:
23K22391 - 财政年份:2024
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
離散リーマン面の離散擬等角変形理論の基礎づけ
离散黎曼曲面离散拟共形变形理论基础
- 批准号:
22K18672 - 财政年份:2022
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
開リーマン面のモジュライを用いた多変数関数論の新展開
使用开黎曼曲面模的多元函数理论的新进展
- 批准号:
19K03522 - 财政年份:2019
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
リーマン面及びクライン面のモジュライ空間における最大単射半径関数の解析
黎曼和克莱因曲面模空间中的最大单射半径函数分析
- 批准号:
18K03348 - 财政年份:2018
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
無限型リーマン面間の擬等角同値性について
无限黎曼曲面之间的伪共形等价
- 批准号:
16J02185 - 财政年份:2016
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for JSPS Fellows
超リーマン面のモジュライ空間に基く解析による閉じた超弦場の理論の定式化の確立
基于超黎曼曲面模空间分析建立闭超弦场论公式
- 批准号:
14J09608 - 财政年份:2014
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for JSPS Fellows
リーマン面の正則族の大域的構成法の種々の試み
黎曼曲面正则族全局构造方法的各种尝试
- 批准号:
18654030 - 财政年份:2006
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for Exploratory Research
リーマン面の正則族のモノドロミーの大域的研究
黎曼曲面正则族单一性的全局研究
- 批准号:
13874025 - 财政年份:2001
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for Exploratory Research
リーマン面上の微分方程式の変形理論
黎曼曲面微分方程的变形理论
- 批准号:
12740101 - 财政年份:2000
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
符号付きリーマン面のモジュライ空間の数論的分解の研究
有符号黎曼曲面模空间算术分解的研究
- 批准号:
11740018 - 财政年份:2000
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)