タイヒミュラー空間とその応用

Teichmuller空间及其应用

基本信息

  • 批准号:
    06640260
  • 负责人:
  • 金额:
    $ 1.28万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
  • 财政年份:
    1994
  • 资助国家:
    日本
  • 起止时间:
    1994 至 无数据
  • 项目状态:
    已结题

项目摘要

複素解析とタイヒミュラー空間論を応用して、複素多様体間の正則写像の空間(ドアディ空間)、リーマン面の双正則同値の問題などを研究した。具体的には次のような成果が得られた。(1)射影的代数多様体からコンパクトなC-双曲的複素多様体への正則写像に対する剛直性定理を証明し、そのドアディ空間の構造を決めた。また、小平曲面を用いて、典型的な例を構成した。この成果は、J.of ,Math.Soc.46(1994)に発表した。(2)2つのリーマン面が双正則同値であるための判定条件(ある種のTorelliの定理)を証明した。これは、Roydenの有名な定理の一般化になっている。この成果はGeometry and Analysis on Complex manifolds(1994)に発表した。(3)2つのリーマン面の間の非定数の正則写像に対する個数評価を得た。この成果は論文として執筆中である。これらの研究はリーマン面の正則族、代数関数体におけるGrauert・Maninの定理やParshin・Arakerovの定理との関連も含めて今後さらに続けられる予定である。また研究分担者達によって、上記の内容に直積的あるいは間接的に関係する形でタイヒミュラー空間、擬等角写像、ポテンシャル論、4次元トポロジー、確率過程、偏微分方程式などに関して多くの成果が得られた。
The application of space theory in complex element analysis, regular image space between complex elements, and biregular image problem of complex elements are studied. The concrete results are obtained. (1)Proving the straightness theorem of regular images of projective algebraic polyhedrons and solving the construction of complex spaces A small flat surface is composed of a typical example. This work was published in J. of, Math. Soc. 46 (1994). (2)2 A proof of the condition for determining the same value of a double regular surface (Torelli's theorem) Royden's famous theorem is generalized. Geometry and Analysis on Complex Manifolds(1994). (3)2 The number of irregular images between the two planes is evaluated. The results of this paper are written in the middle. This paper studies the regular family of the plane, the algebraic correlation body, Grauert Manin's theorem, Parshin Arakerov's theorem and the correlation between them. The results of direct product, indirect relationship, shape space, quasi-equiangular image, solution theory, four-dimensional solution, exact process and partial differential equation are obtained.

项目成果

期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Imayohi,Y.: "Holomorphic maps of projective algebeaic mamifoldo into Compact C-byperbolic narifelds," J.of Math.Soc.of.Japan. 46. (1994)
Imayohi,Y.:“射影代数 mamifoldo 到紧凑 C-byperbolic narifeld 的全纯映射”,J.of Math.Soc.of.Japan。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Kawauchi,A.: "Spliting a 4-manifolds with infinite cyclic fundamental group" Osaka J Math. 31. 489-495 (1994)
Kawauchi,A.:“分裂具有无限循环基本群的 4 流形”Osaka J Math。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Nishio,M.: "Uniqenesz of ketnel functions of the heut eqnation" Potential Analysio. 3. 153-157 (1994)
Nishio,M.:“heut 方程的 ketnel 函数的Uniqenesz”潜力分析。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Imayoshi,Y.: "A Torelli-type theorem for stable cuwes" Geomety and Analysio on Complex Mamifoldo. Word Scientific. 75-95 (1994)
Imayoshi,Y.:“稳定 cuwes 的 Torelli 型定理”复杂 Mamifoldo 的几何和分析。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Nishio,M.: "Minimal thicknes qndunigueneos of kernel fumctions for the heat eqnotion in sevetal variaffes." Osaka J.Math.31. 331-339 (1994)289-307:
Nishio,M.:“几个变量中热方程的内核函数的最小厚度。”
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

今吉 洋一其他文献

Complex Analysis and its applications
复分析及其应用
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M.Nishio;M.Yamada;Y.Imayoshi;J.Noguchi;H.Shiga;A.Kodama;S.Kato;M.Nishio;M.Nishio;児玉 秋雄;西尾 昌治;志賀 啓成;野口 潤次郎;河内 明夫;松本 幸夫;足利 正;今吉 洋一;野口 潤次郎;西尾 昌治;金信 泰造;児玉 秋雄;小森 洋平;加藤 信;佐官 謙一;西尾 昌治;佐官 謙一;小森 洋平;河内 明夫;今吉 洋一;志賀 啓成;足利 正;今吉 洋一
  • 通讯作者:
    今吉 洋一
Fortsetzungen einer Riemannschen Flaeche und eine Verallgemainerung der Poiseuille- Stroemung
黎曼闪光的Fortsetzungen einer Riemannschen Flaeche and eine Verallgemainerung der Poiseuille-Stroemung
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Nishio;N. Suzuki;M. Yamada;今吉 洋一;Masakazu Shiba
  • 通讯作者:
    Masakazu Shiba
Boundary properties of quasiconformal harmonic mappings
拟共形调和映射的边界性质
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M.Nishio;M.Yamada;Y.Imayoshi;J.Noguchi;H.Shiga;A.Kodama;S.Kato;M.Nishio;M.Nishio;児玉 秋雄;西尾 昌治;志賀 啓成;野口 潤次郎;河内 明夫;松本 幸夫;足利 正;今吉 洋一;野口 潤次郎;西尾 昌治;金信 泰造;児玉 秋雄;小森 洋平;加藤 信;佐官 謙一
  • 通讯作者:
    佐官 謙一
Toeplitz operators of Schatten class on parabolic Bergmans spaces
抛物线伯格曼空间上的 Schatten 类 Toeplitz 算子
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M.Nishio;M.Yamada;Y.Imayoshi;J.Noguchi;H.Shiga;A.Kodama;S.Kato;M.Nishio;M.Nishio;児玉 秋雄;西尾 昌治;志賀 啓成;野口 潤次郎;河内 明夫;松本 幸夫;足利 正;今吉 洋一;野口 潤次郎;西尾 昌治
  • 通讯作者:
    西尾 昌治
Klein群の不変成分のRiemann mapについて
关于克莱因群不变分量的黎曼图
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M.Nishio;M.Yamada;Y.Imayoshi;J.Noguchi;H.Shiga;A.Kodama;S.Kato;M.Nishio;M.Nishio;児玉 秋雄;西尾 昌治;志賀 啓成;野口 潤次郎;河内 明夫;松本 幸夫;足利 正;今吉 洋一;野口 潤次郎;西尾 昌治;金信 泰造;児玉 秋雄;小森 洋平;加藤 信;佐官 謙一;西尾 昌治;佐官 謙一;小森 洋平;河内 明夫;今吉 洋一;志賀 啓成
  • 通讯作者:
    志賀 啓成

今吉 洋一的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('今吉 洋一', 18)}}的其他基金

リーマン面の正則族の大域的構成法の種々の試み
黎曼曲面正则族全局构造方法的各种尝试
  • 批准号:
    18654030
  • 财政年份:
    2006
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Exploratory Research
リーマン面の正則族のモノドロミーの大域的研究
黎曼曲面正则族单一性的全局研究
  • 批准号:
    13874025
  • 财政年份:
    2001
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Exploratory Research
正則2次微分とタイヒミュラー空間
正则二阶导数和 Teichmuller 空间
  • 批准号:
    09874035
  • 财政年份:
    1997
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Exploratory Research
タイヒミュラー空間とその応用
Teichmuller空间及其应用
  • 批准号:
    08640227
  • 财政年份:
    1996
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
リーマン面の正則族とタイヒミュラー空間
黎曼曲面正则族和 Teichmuller 空间
  • 批准号:
    07210270
  • 财政年份:
    1995
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
タイヒミュラー空間論とその応用
Teichmuller空间理论及其应用
  • 批准号:
    63540120
  • 财政年份:
    1988
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
Riemann 面の正則族と Teichmiillen 空間, およびそれらの応用
黎曼曲面的正则族、Teichmiillen 空间及其应用
  • 批准号:
    56740072
  • 财政年份:
    1981
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)

相似海外基金

リーマン面に関連する位相幾何学の代数的展開
与黎曼曲面相关的拓扑的代数展开
  • 批准号:
    23K22391
  • 财政年份:
    2024
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
離散リーマン面の離散擬等角変形理論の基礎づけ
离散黎曼曲面离散拟共形变形理论基础
  • 批准号:
    22K18672
  • 财政年份:
    2022
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
開リーマン面のモジュライを用いた多変数関数論の新展開
使用开黎曼曲面模的多元函数理论的新进展
  • 批准号:
    19K03522
  • 财政年份:
    2019
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
リーマン面及びクライン面のモジュライ空間における最大単射半径関数の解析
黎曼和克莱因曲面模空间中的最大单射半径函数分析
  • 批准号:
    18K03348
  • 财政年份:
    2018
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
無限型リーマン面間の擬等角同値性について
无限黎曼曲面之间的伪共形等价
  • 批准号:
    16J02185
  • 财政年份:
    2016
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
超リーマン面のモジュライ空間に基く解析による閉じた超弦場の理論の定式化の確立
基于超黎曼曲面模空间分析建立闭超弦场论公式
  • 批准号:
    14J09608
  • 财政年份:
    2014
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
リーマン面の正則族の大域的構成法の種々の試み
黎曼曲面正则族全局构造方法的各种尝试
  • 批准号:
    18654030
  • 财政年份:
    2006
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Exploratory Research
リーマン面の正則族のモノドロミーの大域的研究
黎曼曲面正则族单一性的全局研究
  • 批准号:
    13874025
  • 财政年份:
    2001
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Exploratory Research
符号付きリーマン面のモジュライ空間の数論的分解の研究
有符号黎曼曲面模空间算术分解的研究
  • 批准号:
    11740018
  • 财政年份:
    2000
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
リーマン面上の微分方程式の変形理論
黎曼曲面微分方程的变形理论
  • 批准号:
    12740101
  • 财政年份:
    2000
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了