Basic Studies on the Qauntumzation of Nonlinear Coastal Waves
非线性海岸波量子化的基础研究
基本信息
- 批准号:60550363
- 负责人:
- 金额:$ 1.28万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for General Scientific Research (C)
- 财政年份:1985
- 资助国家:日本
- 起止时间:1985 至 1986
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
It has recently been recongnized that waves in shallow water are composed of a dynamic coherent structure in which solitons are elementary excitation. To formulate the waves with soliton modes, qauntumzation of Stokes waves and solitons which are deduced from the KdV equation is made and energy distribution function is obtained. Based on the formulation, a statistical theory of random solitons is proposed. The main results are summarized as:1) For the qauntumzation of Stokes waves, solutions to the Schroedinger equation which was derived from the Hamiltonian of Stokes waves were obtained to have wave energy distribution functions. Similar distribution functions of solitons were obtained from the KdV equation.2) From the view point of dynamic coherent structures of the waves in shallow water, a statistical theory of random solitons was proposed. Its applications to waves in various conditions were made using wave data obtained at Ogata Wave Observatory.3) Applicability of the solitons in wave profiles is very good for the nonlinear waves having greater Ursell numbers than 10, as well as waves including breaking waves.4) Three types of soliton eigenvalue distribution functions were obtained for various wave conditions and they are conservative in propagation of the waves in shallow water as soliton modes. The theoretical energy distribution function was compared with the observed ones with good agreement.
最近人们认识到,浅水中的波是由一个以孤子为基本激励的动态相干结构组成的。为了描述具有孤子模的波,对KdV方程导出的Stokes波和孤子进行了量子化,得到了能量分布函数。在此基础上,提出了随机孤子的统计理论。主要结果如下:1)对于Stokes波的量子化,得到了由Stokes波的哈密顿量导出的薛定谔方程的解具有波的能量分布函数。从KdV方程出发,得到了相似的孤子分布函数。2)从浅水中波的动态相干结构出发,提出了随机孤子的统计理论。利用Ogata波浪观测站获得的波浪数据,将其应用于不同条件下的波浪。3)孤子在波浪剖面中的适用性很好,适用于Ursell数大于10的非线性波,以及包括破碎波在内的波。4)得到了三种不同情况下的孤子本征值分布函数,它们作为孤子模在浅水中传播时是保守的。将理论能量分布函数与实测值进行了比较,两者吻合较好。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Yasuda,T.,N.Nakashima and Y.Tsuchiya: Proc.20th International Conference on Coastal Engineering,ASCE. (1986)
Yasuda,T.,N.Nakashima 和 Y.Tsuchiya:Proc.20th 国际海岸工程会议,ASCE。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Tsuchiya, Y., T. Yasuda and S. Shinoda: "Random multi-solitons in shallow water and their statistical theory" Annuals, Disaster Prevention Research Institute, Kyoto University. No. 29B-2. 691-716 (1986)
Tsuchiya, Y.、T. Yasuda 和 S. Shinoda:“浅水中的随机多孤子及其统计理论”年鉴,京都大学防灾研究所。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Tsuchiya, Y., T. Yasuda, S. Shinoda and M. Uemoto: "Wave propagation in surf zones and soliton modes" Proc. 33rd Japanese Conference on Coastal Engineering, JSCE. 11-15 (1986)
Tsuchiya, Y.、T. Yasuda、S. Shinoda 和 M. Uemoto:“冲浪区中的波传播和孤子模式”Proc。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Yasuda, T., N. Nakashima and Y. Tsuchiya: "Grouping waves and their expression of asymptotic envelope soliton modes" Proc. 20th International Conference on Coastal Engineering, ASCE. (1986)
Yasuda, T.、N. Nakashima 和 Y. Tsuchiya:“分组波及其渐近包络孤子模式的表达”Proc。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
土屋義人,安田孝志,篠田成郎: 京都大学防災研究所年報. 第29号B-2. 691-716 (1986)
Yoshito Tsuchiya、Takashi Yasuda、Shigeo Shinoda:京都大学防灾研究所年度报告第 29 B-2 号(1986 年)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TSUCHIYA Yoshito其他文献
TSUCHIYA Yoshito的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TSUCHIYA Yoshito', 18)}}的其他基金
Methodology of Beach Erosion Control for the Reduction of a River Delta and Its Application
减少河三角洲海滩侵蚀控制方法及其应用
- 批准号:
07555164 - 财政年份:1995
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Prediction and Prevention of Natural Disaster in East Asia (Indonesia and China)
东亚(印度尼西亚和中国)自然灾害的预测和预防
- 批准号:
03044167 - 财政年份:1991
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Overseas Scientific Survey.
Theory of Stable Sandy Beach Formation and Its Applicability
稳定沙滩形成理论及其应用
- 批准号:
03452212 - 财政年份:1991
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for General Scientific Research (B)
Methodology for Controlling Beach Erosion by Large Coastal Structures and Its Application
大型海岸结构侵蚀海滩控制方法及其应用
- 批准号:
01850121 - 财政年份:1989
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Developmental Scientific Research
Studies on the laws for sand transport in bed load by waves, winds and currents
波浪、风、流对底质输沙规律的研究
- 批准号:
62420040 - 财政年份:1987
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for General Scientific Research (A)
Development of Ultra-Sonic Current Meter for Long Term Nearshore Current Observation in Surf Zones and Its Application
海浪区近岸海流长期观测超声波海流计的研制及其应用
- 批准号:
62850097 - 财政年份:1987
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Developmental Scientific Research
相似国自然基金
黎曼流形上的Ricci Soliton及几何结构研究
- 批准号:11401179
- 批准年份:2014
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
Witten Laplacian的特征值及与其相关的Ricci Soliton研究
- 批准号:11371018
- 批准年份:2013
- 资助金额:56.0 万元
- 项目类别:面上项目
Ricci soliton 几何性质的研究
- 批准号:11226081
- 批准年份:2012
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
曲率流下soliton的几何性质与应用
- 批准号:11126204
- 批准年份:2011
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
约瑟夫逊结传输线中的孤子(soliton)研究
- 批准号:18670744
- 批准年份:1986
- 资助金额:4.0 万元
- 项目类别:面上项目
相似海外基金
High-energy short-wavelength infrared soliton dynamics and sub-cycle strong-field physics
高能短波红外孤子动力学与亚周期强场物理
- 批准号:
EP/Z001250/1 - 财政年份:2024
- 资助金额:
$ 1.28万 - 项目类别:
Fellowship
Application of high-speed flame propagation mechanism by vortex filament soliton to hydrogen and ammonia combustion fields toward decarbonization
涡丝孤子高速火焰传播机制在氢氨燃烧领域的脱碳应用
- 批准号:
23K03687 - 财政年份:2023
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis of Regular and Random Soliton Gases in Integrable Dispersive Partial Differential Equations.
可积色散偏微分方程中规则和随机孤子气体的分析。
- 批准号:
2307142 - 财政年份:2023
- 资助金额:
$ 1.28万 - 项目类别:
Standard Grant
Multi-soliton Dynamics for Dispersive Partial Differential Equations
色散偏微分方程的多孤子动力学
- 批准号:
2247290 - 财政年份:2023
- 资助金额:
$ 1.28万 - 项目类别:
Standard Grant
Nonlinear acoustic theory toward a transform of shock to soliton in liquids by microbubbles
非线性声学理论通过微泡将液体中的激波转换为孤子
- 批准号:
22K03898 - 财政年份:2022
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Microbubble resonator dispersion engineering for blue-band soliton comb generation
用于蓝带孤子梳生成的微泡谐振器色散工程
- 批准号:
22K14621 - 财政年份:2022
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Soliton gas at the crossroads of dispersive and generalised hydrodynamics
孤子气体处于色散和广义流体动力学的十字路口
- 批准号:
EP/W032759/1 - 财政年份:2022
- 资助金额:
$ 1.28万 - 项目类别:
Research Grant
Workshop on Trends in Soliton Dynamics and Singularity Formation for Nonlinear Dispersive PDEs
非线性色散偏微分方程孤子动力学和奇点形成趋势研讨会
- 批准号:
2230164 - 财政年份:2022
- 资助金额:
$ 1.28万 - 项目类别:
Standard Grant
Soliton Dynamics for Non-Linear Wave Equations
非线性波动方程的孤子动力学
- 批准号:
1954455 - 财政年份:2020
- 资助金额:
$ 1.28万 - 项目类别:
Continuing Grant
Breather and Soliton Gases for the Focusing Nonlinear Schrodinger Equation: Theoretical and Applied Aspects
用于聚焦非线性薛定谔方程的呼吸气体和孤子气体:理论和应用方面
- 批准号:
2009647 - 财政年份:2020
- 资助金额:
$ 1.28万 - 项目类别:
Continuing Grant