Studies on Hardy spaces by real analytic methods
Hardy空间的实解析方法研究
基本信息
- 批准号:09640146
- 负责人:
- 金额:$ 0.9万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1997
- 资助国家:日本
- 起止时间:1997 至 1999
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Hardy spaces constructed in an n-dimensional Euclidean space have been studied by many authors since a long time ago as well as those built on n-dimensional torus. In this research we have pointed out that the both of two have very similar constructions through the investigation of the transference problem.When a bounded function defined on an n-dimensional Euclidean space is given, we have an operator called Fourier multiplier operator which is defined by multiplying the Fourier transform of an object function or a distribution by the bounded function. On the other hand, if we consider the restriction of the given bounded function to the n-dimensional lattice, then we have a Fourier multiplier operator in the frame of Fourier series arguments.A countable number of bounded functions make a sequence of Fourier multiplier operators in both frames of Fourier transform and Fourier series. Each of them constructs the associated maximal operator. We have succeeded to prove that the continuity of the maximal operator in the frame of Fourier transform argument from a Hardy space to a weak Lebesgue space implies the continuity of the counterpart maximal operator in the setting of Fourier series argument.Furthermore, we have studied the maximal operator obtained by the family of convoluted functions by an integrable function of a given sequence of bounded functions. We have gained an simple proof of showing that the continuity of the above maximal operator is reduced from the continuity of the maximal operator defined by the sequence of initially given and nonconvoluted bounded functions.
构造在n维欧氏空间上的哈代空间和构造在n维环面上的Hardy空间,一直以来都是许多学者研究的对象。本文通过对迁移问题的研究,指出两者具有非常相似的结构:当给定一个定义在n维欧氏空间上的有界函数时,我们有一个称为Fourier乘子算子的算子,它是通过将目标函数或分布的Fourier变换与有界函数相乘而定义的。另一方面,如果考虑给定的有界函数对n维格的限制,则在Fourier级数变元框架下存在Fourier乘子算子,可数个有界函数构成Fourier变换框架和Fourier级数框架下的Fourier乘子算子序列.它们中的每一个构造了相关的极大算子。我们成功地证明了极大算子在从哈代空间到弱Lebesgue空间的Fourier变换变元框架下的连续性蕴涵了相应的极大算子在Fourier级数变元框架下的连续性,并进一步研究了由给定有界函数列的可积函数构成的卷积函数族所得到的极大算子.我们得到了一个简单的证明,证明了上述极大算子的连续性是由初始给定的非卷积有界函数序列所定义的极大算子的连续性退化而来的.
项目成果
期刊论文数量(26)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Y. Kawaguchi and Y. Suzuki: "Saturation problem in approximation of functions by some operators associated with the generalized Jackson's operators"Interdisciplinary Information Sciences. 5-2. 125-148 (1999)
Y. Kawaguchi 和 Y. Suzuki:“与广义杰克逊算子相关的一些算子逼近函数时的饱和问题”跨学科信息科学。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Y. Ohno: "Some invariant subspaces in LィイD32(/)HィエD3"Interdisciplinary Information Sciences. 2-2. 131-137 (1996)
Y. Ohno:“LiiD32(/)HieD3 中的一些不变子空间”跨学科信息科学 2-2 (1996)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
S.Aida: "Differential calculus on path and loop spaces, II. lrredsicibility of Dirichlet forms on loop spaces" Bull.Sciences Math.122・8. 635-666 (1998)
S.Aida:“路径和循环空间上的微分,II.循环空间上狄利克雷形式的不可消除性”Bull.Sciences Math.122・8(1998)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M.Kaneko: "Notes on trausference of continuity from maximal Fourier multiplier operators on IR^n to those on II^<n >"Interdisciplinary Information Sciences. 4. 97-107 (1998)
M.Kaneko:“关于从 IR^n 上的最大傅里叶乘数算子到 II^<n> 上的连续性遍历的注释”跨学科信息科学。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K.Ichijo,Y.Ishikawa & M.Okada: "Some remarks on Besov sps. and the wavelet de-noising method"Japan J. Ind. Appl. Math.. 16・2. 287-305 (1999)
K.Ichijo、Y.Ishikawa 和 M.Okada:“关于 Besov sps. 和小波去噪方法的一些评论”Japan J. Ind. Appl. 16・2 (1999)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KANEKO Makoto其他文献
KANEKO Makoto的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KANEKO Makoto', 18)}}的其他基金
The semantics and pragmatics of Japanese plurals
日语复数的语义和语用
- 批准号:
23520463 - 财政年份:2011
- 资助金额:
$ 0.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Challenge of real time stiffness measurement of red blood cells
红细胞实时硬度测量的挑战
- 批准号:
23656186 - 财政年份:2011
- 资助金额:
$ 0.9万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Assessment of the efficacy of collagen-coated-bead columns for antiplatelet therapy in clinical settings
评估临床环境中胶原蛋白涂层珠柱抗血小板治疗的功效
- 批准号:
21790532 - 财政年份:2009
- 资助金额:
$ 0.9万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Analysis of the Mechanism of the Delay Characteristics in Cornea Deformation of Living Eye
活体眼角膜变形延迟特性机制分析
- 批准号:
19300183 - 财政年份:2007
- 资助金额:
$ 0.9万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
A study of constructions in Japanese and in French including a negative polarity item and conveying a surprise or an exclamation
对日语和法语结构的研究,包括负极性项目并表达惊讶或感叹
- 批准号:
19520346 - 财政年份:2007
- 资助金额:
$ 0.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Non-Contact Stiffness Imager
非接触式刚度成像仪
- 批准号:
17360116 - 财政年份:2005
- 资助金额:
$ 0.9万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Research on Tactile Differentiator
触觉区分器的研究
- 批准号:
14350132 - 财政年份:2002
- 资助金额:
$ 0.9万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Characterizations of real Hardy spaces and functional analysis
真实 Hardy 空间的表征和泛函分析
- 批准号:
13640148 - 财政年份:2001
- 资助金额:
$ 0.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Tracing Type Active Antenna with Friction Independence
具有摩擦无关性的跟踪型有源天线
- 批准号:
12650251 - 财政年份:2000
- 资助金额:
$ 0.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Grasp strategy for pyramidal-like object
金字塔状物体的抓取策略
- 批准号:
10650259 - 财政年份:1998
- 资助金额:
$ 0.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)