STUDY ON THE COMPLEX AFFINE SPACE CィイD1NィエD1 AND ITS COMPACTIFICATION
复仿射空间C D1N D1及其紧化研究
基本信息
- 批准号:10640026
- 负责人:
- 金额:$ 1.92万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1998
- 资助国家:日本
- 起止时间:1998 至 1999
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We investigated projective compactifications or non-projective Moishezon compactifications of CィイD13ィエD1 and the classification of minimal normal compactifications of CィイD12ィエD1/G, where G is a small finite subgroup of the general linear group GL(2,C), and we obtained several new results. We will state as follows. There are six types of projective compactifications of CィイD13ィエD1 with second Betti number equal to one. This was obtained by Furushima before. In this research, we gave a concrete construction of these six compactifications of C3 from the well-known compactifications (PィイD13ィエD1,PィイD12ィエD1), that is, we gave an explicit birational map of PィイD13ィエD1 to X which is biregular on CィイD13ィエD1-part. This finishes the projective classifications of such compactifications of CィイD13ィエD1.Next, we also studied the structure of the non-projective compactifications (X,Y) of CィイD13ィエD1 with second Betti number equal to one. In this case, it is easy to see that the canonical divisor can be written as follow: KX=-rY (r>0 is an integer). In this research, we can show that the integer r is equal to one or two and that there are many new examples of such non-projective compactifications of CィイD13ィエD1.Furthermore, we find that some technique developed in the study of compactifications of CィイD13ィエD1 can be applied to the classification of the minimal normal compactifications of CィイD12ィエD1/G, then we succeeded in its classification.
我们研究了CィイD13ィエD_1的射影紧化或非射影Moishezon紧化以及C_ィイD_(12)ィエD_1/G的极小正规紧化的分类,其中G是一般线性群GL(2,C)的一个小的有限子群,得到了几个新的结果。我们将声明如下。C-ィイ-D13-ィエ-D-1有六种射影紧化,其第二Betti数等于1。这是古岛之前获得的。在这项研究中,我们从著名的紧化(PィイD13ィエD_1,PィイD_12ィエD_1)给出了C_3的这六个紧化的具体构造,即给出了P_ィイD_(13)ィエD_1到X的显式双正则映射C_ィイD_(13)ィエD_1-部分。其次,我们还研究了CィイD13ィエD1的非射影紧化(X,Y)的结构,其中第二个Betti数等于1。在这种情况下,很容易看到标准除数可以写成:kx=-ry(r>;0是一个整数)。在这项研究中,我们可以证明整数r等于1或2,并且CィイD13ィエD1的这种非射影紧化有许多新的例子。此外,我们发现在CィイD13ィエD 1的紧化研究中发展的一些技巧可以应用于CィイD12ィエD 1/G的极小正规紧化的分类,并且我们成功地分类了它。
项目成果
期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
M.Furushima: "Non-projctive compactifications of CィイD13ィエD1II: (New Examples),"Kyushu J. Math.. 52,No.1. 149-162 (1998)
M.Furushima:“C2D13D1II 的非投影紧化:(新示例)”,Kyushu J. Math.. 52,No.1(1998)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
古島幹雄: "Non-projective compactifications of C^3 III:A remark on indices"Hiroshima Math.J.. 29・(2). 295-298 (1999)
Mikio Furushima:“C^3 III 的非投影紧化:关于指数的评论”Hiroshima Math.J.. 29・(2) (1999)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
古島 幹雄: "Non-projective compactifications of C^3 III : A remark on indices"Hiroshima Math. J.. 29・(2). 295-298 (1999)
Mikio Furushima:“C^3 III 的非投影紧化:关于索引的评论”Hiroshima Math J.. 29・(2) (1999)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M.Furushima: "Non-projectie compactifications of C^3 (II)" Kyushu J.Math.52. 149-162 (1998)
M.Furushima:“C^3 (II) 的非投影紧化”九州 J.Math.52。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M.Abe, M.Furushima, and M.Tsuji: "Equicontinuity domain and disk property"Complex Variables. 39. 19-25 (1998)
M.Abe、M.Furushima 和 M.Tsuji:“等连续域和盘性质”复杂变量。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
FURUSHIMA Mikio其他文献
FURUSHIMA Mikio的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('FURUSHIMA Mikio', 18)}}的其他基金
A study on compactifications of complex affine planes and spaces
复杂仿射平面和空间的紧化研究
- 批准号:
22540051 - 财政年份:2010
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Non-projective compactifications of three dimensional affine space
三维仿射空间的非射影紧化
- 批准号:
19540041 - 财政年份:2007
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A study on the singular Fano compactifications of 3-dimensional complex affine spaces
3维复仿射空间奇异Fano紧化研究
- 批准号:
16540074 - 财政年份:2004
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The structure and classification of complex analytic compactifications of C^n with the second Betti number equal to one
第二个Betti数等于1的C^n的复解析紧化的结构和分类
- 批准号:
13640082 - 财政年份:2001
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Flavor structure and CP violation from string compactification
字符串压缩带来的风味结构和 CP 破坏
- 批准号:
23K03375 - 财政年份:2023
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Degeneration of abelian varieties and compactification of moduli
阿贝尔簇的退化和模的紧化
- 批准号:
22K03261 - 财政年份:2022
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A Study on Cooperation and Integration system of Urban space planning for Sustainable compactification
可持续压缩的城市空间规划合作整合体系研究
- 批准号:
21K14315 - 财政年份:2021
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The metric compactification and its applications in analysis and dynamics
度量紧化及其在分析和动力学中的应用
- 批准号:
2467850 - 财政年份:2020
- 资助金额:
$ 1.92万 - 项目类别:
Studentship
CAREER: Effective Field Theories from String Compactification
职业:弦紧化的有效场论
- 批准号:
1756996 - 财政年份:2017
- 资助金额:
$ 1.92万 - 项目类别:
Continuing Grant
Compactification of the moduli of abelian varieties over an integer ring
整数环上阿贝尔簇模的紧化
- 批准号:
17K05188 - 财政年份:2017
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Obtaining heterotic string theories via orbifold compactification of M-theory at the level of fully non-abelian actions for multiple M2-branes.
通过在多个 M2 膜的完全非阿贝尔作用水平上对 M 理论进行轨道压缩,获得杂优势弦理论。
- 批准号:
2026568 - 财政年份:2017
- 资助金额:
$ 1.92万 - 项目类别:
Studentship
Degeneration and collapsing of Kleinian groups; geometry and analysis of the compactification of their defamation spaces
克莱因群的退化和崩溃;
- 批准号:
16H03933 - 财政年份:2016
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Group Action on the conformal compactification of the Minkowski space
闵可夫斯基空间共形紧化的群作用
- 批准号:
443483-2013 - 财政年份:2015
- 资助金额:
$ 1.92万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
CAREER: Effective Field Theories from String Compactification
职业:弦紧化的有效场论
- 批准号:
1452037 - 财政年份:2015
- 资助金额:
$ 1.92万 - 项目类别:
Continuing Grant














{{item.name}}会员




