Studies on Neoclassical Quasilinear Transport Theory
新古典拟线性输运理论研究
基本信息
- 批准号:10680478
- 负责人:
- 金额:$ 0.7万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1998
- 资助国家:日本
- 起止时间:1998 至 1999
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this researdh program, a synthetic theory unifying neoclassical and anomalous transport is presented for a weakly turbulet plasma. The following topics have been mainly studied :1. The transport matrix that relates the anomalous particle and heat fluxes and the parallel current to the thermodynamical forces is obtained for a cylindrical plasma in a presence of electrostatic fluctuations. The crucial difference of our formulation with previous works lies in keeping an extra term in the kinetic equation for the fluctuating distribution function. This extra term leads to the Ware pinch components of the particle and heat fluxes and the correction to the Ohmic current. Furthermore, Shaing's ansatz, which was introduced in the synthetic theory, is shown to be concerned with this extra term, and the physical meaning and the validity of this ansatz are revealed. In addition, it is found that the Onsager symmetry for the anomalous transport matrix is boken for a drift-ware turbulent plasma.2. The toroidal effect on the transport matrix is studied for a tokamak plasma. The Ware pinch components of the anomalous particle and heat fluxes and the anomalous parallel current are shown to be sensitive to the toroidal effect. In the banana regime, these pinch components and the parallel current are significantly reduced when the condition |ξィイD2eィエD2|ィイD82εィエD8 is satisfied, where ε is the inverse aspect ratio and ξィイD2eィエD2 is the ratio of the phase velocity of fluctuation to the electron thermal velocity. The anomalous parallel viscosity, the anomalous toroidal rotation velocity, and the toroidal correction terms to the anomalous radial fluxes are also calculated. Moreover, interpolated formulae that can be used throughout all collisionality regimes are presented.3. The synthetic theory is extended to a plasma in nonaxisymmetric magneticfiled, and to a plasma in the presence of not only electrostatic but also electromagnetic fluctuations.
本文提出了一个统一弱湍流等离子体新经典输运和反常输运的综合理论。本文主要研究了以下几个问题:1.对于存在静电涨落的圆柱形等离子体,得到了将反常粒子通量、热通量和平行电流与引力联系起来的输运矩阵。我们的配方与以前的作品的关键区别在于保持一个额外的项在动力学方程的波动分布函数。这个额外的项导致粒子和热通量的Ware箍缩分量以及对欧姆电流的校正。进一步证明了综合理论中引入的Shaing定理与这一附加项有关,并揭示了这一定理的物理意义和正确性。此外,还发现漂移波湍流等离子体的反常输运矩阵具有Onsager对称性.本文研究了托卡马克等离子体中环向效应对输运矩阵的影响。反常粒子和热通量的Ware箍缩分量以及反常平行电流对环形效应敏感。在香蕉状态下,当条件满足时,这些箍缩分量和并联电流显著减小。|电子邮件:info@hkd.com.cn|其中ε是纵横比的倒数,而ε_(10)D_(20)D_(20)D_(20)是波动的相速度与电子热速度的比值。计算了异常平行粘度、异常环向自转速度和异常径向通量的环向修正项。此外,给出了适用于所有碰撞区域的内插公式.本文将综合理论推广到非轴对称磁场中的等离子体和既有静电涨落又有电磁涨落的等离子体。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
M. Taguchi and R. Balescu: "Anomalous Transport Matrix for Tokamak Plasma in the Weakly Turbulent Regime"Proc. 1998 ICPP & 25th EPS Conf. On Controlled Fusion and Plasma Physics, Praha. 22C. 2069-2072 (1998)
M. Taguchi 和 R. Balescu:“弱湍流状态下托卡马克等离子体的异常输运矩阵”Proc。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M.Taguchi: "Neoclassical Transport Coefficients for Alpha Particles"Proc. 6^<th> IAEA Technical Meeting, JAERI. (印刷中).
M.Taguchi:“阿尔法粒子的新古典输运系数”第 6 次 IAEA 技术会议,JAERI(正在出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M.Taguchi: "Neoclassical quasilinear transport theory in tokamak plasmas"Journal of Plasma Physics. 62.3. 287-303 (1999)
M.Taguchi:“托卡马克等离子体中的新古典准线性输运理论”等离子体物理学杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M.Taguchi, R.Balescu: "Anomalous Transport Matrix for Tokamak Plasma in the Weakly Turbulent Regime"Proc. 1998 ICCP&25^<th> EPS Conf. On Controlled Fusion and Plasma Physics, Praha. 22C. 2069-2072 (1998)
M.Taguchi,R.Balescu:“弱湍流状态下托卡马克等离子体的异常输运矩阵”Proc。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M.Taguchi: "Anomalous transport matrix for cylindrical plasmas"Journal of Plasma Physics. 62.3. 269-285 (1999)
M.Taguchi:“圆柱形等离子体的异常传输矩阵”等离子体物理学杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TAGUCHI Masayoshi其他文献
TAGUCHI Masayoshi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TAGUCHI Masayoshi', 18)}}的其他基金
Current-drive theory in the presence of fluctuations
存在波动时的电流驱动理论
- 批准号:
17560732 - 财政年份:2005
- 资助金额:
$ 0.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Anomalous effects on classical and neoclassical transport
对古典和新古典交通的异常影响
- 批准号:
15560718 - 财政年份:2003
- 资助金额:
$ 0.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Finite Banana-Width Effect on Neoclassical Transport Theory
新古典输运理论中的有限香蕉宽度效应
- 批准号:
12680494 - 财政年份:2000
- 资助金额:
$ 0.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Mathematical approach to 2 phase problem in unbounded domains and an extension of its approach to the theory of quasilinear parabolic equations
无界域中两相问题的数学方法及其对拟线性抛物型方程理论的扩展
- 批准号:
22H01134 - 财政年份:2022
- 资助金额:
$ 0.7万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Regularity and Stability for Solutions of Quasilinear Wave Equations with Singularities
具有奇异性的拟线性波动方程解的正则性和稳定性
- 批准号:
2206218 - 财政年份:2022
- 资助金额:
$ 0.7万 - 项目类别:
Continuing Grant
Asymptotic analysis of quasilinear ordinary differential equations and its application to partial differential equations
拟线性常微分方程的渐近分析及其在偏微分方程中的应用
- 批准号:
21K03307 - 财政年份:2021
- 资助金额:
$ 0.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
New developments in mathematical analysis of spatio-temporal nonuniform dynamics in quasilinear hyperbolic-parabolic conservation laws
拟线性双曲-抛物线守恒定律时空非均匀动力学数学分析新进展
- 批准号:
20H00118 - 财政年份:2020
- 资助金额:
$ 0.7万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Quasilinear Dissipation of Turbulently-Generated Kinetic Alfven Waves: Kinetics of Ion Heating and Solar Wind Acceleration in Coronal Holes
湍流产生的动能阿尔芬波的拟线性耗散:冕洞中离子加热和太阳风加速的动力学
- 批准号:
2005982 - 财政年份:2020
- 资助金额:
$ 0.7万 - 项目类别:
Standard Grant
Quasilinear symmetric hyperbolic-hyperbolic systems of second or mixed order, with applications to relativistic fluid dynamics
二阶或混合阶拟线性对称双曲-双曲系统,及其在相对论流体动力学中的应用
- 批准号:
423781085 - 财政年份:2019
- 资助金额:
$ 0.7万 - 项目类别:
Research Grants
CAREER: Quasilinear Dispersive Evolutions in Fluid Dynamics
职业:流体动力学中的拟线性色散演化
- 批准号:
1845037 - 财政年份:2019
- 资助金额:
$ 0.7万 - 项目类别:
Continuing Grant
Regularity Theory for Degenerate Quasilinear Wave Equations and its Applications
简并拟线性波动方程的正则理论及其应用
- 批准号:
19K14573 - 财政年份:2019
- 资助金额:
$ 0.7万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Mathematical analysis of quasilinear partial differential equations in metric graphs
度量图中拟线性偏微分方程的数学分析
- 批准号:
19K23405 - 财政年份:2019
- 资助金额:
$ 0.7万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Viscosity solution theory for quasilinear PDEs, free boundary problems and thier applications
拟线性偏微分方程的粘度解理论、自由边界问题及其应用
- 批准号:
18K13436 - 财政年份:2018
- 资助金额:
$ 0.7万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




