Discrete groups and geometry of ideal boundary

理想边界的离散群和几何

基本信息

  • 批准号:
    11640056
  • 负责人:
  • 金额:
    $ 2.05万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1999
  • 资助国家:
    日本
  • 起止时间:
    1999 至 2000
  • 项目状态:
    已结题

项目摘要

The purpose of this project was to investigate the stability/rigidity of discrete groups from the viewpoint of geometry of the ideal boundary of negatively curved spaces and the cohomology of deiscrete groups. Our main result is summarized as follows.Let Γ be a Kleinian group acting on n-sphere. If Γ is convex cocompact, the quotient of the domain of discontinuity is compact by definition. However, the converse is not true in general. Izeki (head investigator) showed that if the Hausdorff dimension of the limit set of Γ is less than n/2 and the quotient of the domain of discontinuity is compact, then Γ is convex cocompact. As a consequence, such a Γ is quasiconformally stable. We also gave several applications to topology and geometry of conformally flat manifolds with positive scalar curvature.In case the Hausdorff dimension of the limit set is less than (n-2)/2, we found a proof using the index theorem for higher A^^<^>-genus. We applied the index theorem to the quotient of the domain of discontinuity. We note here what we mean by the ideal bounary is just the quotient of the domain of discontinuity. The higher A^^<^>-genus carries the information of the fundamental group, which turns out to be isomorphic to Γ in our case, and that is all that the higher A^^<^>-genus knows. And it is determined by the cohomology of Γ.
该项目的目的是从负弯曲空间的理想边界的几何学和离散群的上同调的角度研究离散群的稳定性/刚性。我们的主要结果概括如下:设Γ是作用在n-球面上的Kleinian群。若Γ是凸余紧的,则不连续区域的商根据定义是紧的。然而,一般情况下,匡威并不正确。Izeki(首席研究员)证明,如果Γ的极限集的Hausdorff维数小于n/2,并且不连续域的商是紧的,则Γ是凸余紧的。因此,这样的Γ是拟共形稳定的。我们还给出了具有正数量曲率的共形平坦流形在拓扑学和几何学中的应用,在极限集的Hausdorff维数小于(n-2)/2的情况下,利用高阶A^^<^>-亏格的指标定理给出了一个证明.我们将指数定理应用于不连续区域的商。这里我们注意到理想边界的意思就是不连续区域的商。高级A^^<^>-亏格携带基本群的信息,在我们的例子中,基本群同构于Γ,这就是高级A^^<^>-亏格所知道的全部。它是由Γ的上同调决定的。

项目成果

期刊论文数量(47)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
T. Sunada: "Co-growth functions and spectra of the adjacency operators for finitely generated groups"J. Math. Soc. Japan. (to appear).
T. Sunada:“有限生成群的邻接算子的共同增长函数和谱”J.
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
M.Kotani and T.Sunada: "Albanese maps and off diagonal long time asymptotics for the heat kernels"Comm.Math.Phys.. 209. 633-670 (2000)
M.Kotani 和 T.Sunada:“Albanese 映射和热核的非对角长时间渐近”Comm.Math.Phys.. 209. 633-670 (2000)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Sunada: "ω-growth function and spectra of the adjacency operators for finitely generated groups"J. Math. Soc. Japan. (発表予定).
T.Sunada:“有限生成群的邻接算子的 ω 增长函数和谱”J.Math。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
M.Kotani and T.Sunada: "Jacobian tori associated with a finite graph and its abelian covering graphs"Adv.in Appl.Math.. 24. 89-110 (2000)
M.Kotani 和 T.Sunada:“雅可比环面与有限图及其阿贝尔覆盖图相关”Adv.in Appl.Math.. 24. 89-110 (2000)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H. Izeki: "Quasiconformal stability of Kleinian groups and an embedding of a space of flat conformal structures"Conform. Geom. Dyn.. 4. 108-119 (2000)
H. Izeki:“克莱因群的拟共形稳定性和平坦共形结构空间的嵌入”Conform。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

IZEKI Hiroyasu其他文献

IZEKI Hiroyasu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('IZEKI Hiroyasu', 18)}}的其他基金

An approach to the superrigidity of infinite discrete groups via random groups
通过随机群求解无限离散群超刚性的方法
  • 批准号:
    25287013
  • 财政年份:
    2013
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
New approach to discrete geometry --- capturing the shape of finite groups
离散几何的新方法——捕获有限群的形状
  • 批准号:
    24654016
  • 财政年份:
    2012
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Rigidity and fixed-point property of finitely generated groups
有限生成群的刚性和定点性质
  • 批准号:
    21540062
  • 财政年份:
    2009
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A differential geometric approach to discrete group theory
离散群论的微分几何方法
  • 批准号:
    18540062
  • 财政年份:
    2006
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Combinatorial harmonic maps and a rigidity of discrete-group actions
组合调和映射和离散群作用的刚性
  • 批准号:
    15540056
  • 财政年份:
    2003
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Rigidity of discrete groups and index theorems
离散群的刚性和指数定理
  • 批准号:
    13640057
  • 财政年份:
    2001
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Group Actions, Rigidity, and Invariant Measures
群体行动、刚性和不变措施
  • 批准号:
    2400191
  • 财政年份:
    2024
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Standard Grant
Conference: Groups Actions and Rigidity: Around the Zimmer Program
会议:团体行动和刚性:围绕 Zimmer 计划
  • 批准号:
    2349566
  • 财政年份:
    2024
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Standard Grant
CAREER: Rigidity in Mapping class groups and homeomorphism groups
职业:映射类群和同胚群中的刚性
  • 批准号:
    2339110
  • 财政年份:
    2024
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Continuing Grant
THE ROLE OF MEDIUM SPINY NEURONS IN SLEEP DEPRIVATION-INDUCED COGNITIVE RIGIDITY.
中型棘神经元在睡眠剥夺引起的认知僵化中的作用。
  • 批准号:
    10656057
  • 财政年份:
    2023
  • 资助金额:
    $ 2.05万
  • 项目类别:
Transcutaneous Phrenic Nerve Stimulation for Treating Opioid Overdose
经皮膈神经刺激治疗阿片类药物过量
  • 批准号:
    10681111
  • 财政年份:
    2023
  • 资助金额:
    $ 2.05万
  • 项目类别:
The geometry, rigidity and combinatorics of spaces and groups with non-positive curvature feature
具有非正曲率特征的空间和群的几何、刚度和组合
  • 批准号:
    2305411
  • 财政年份:
    2023
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Standard Grant
Rigidity and boundary phenomena for geometric variational problems
几何变分问题的刚性和边界现象
  • 批准号:
    DE230100415
  • 财政年份:
    2023
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Discovery Early Career Researcher Award
Characterizing and modulating motor cortical dynamics underlying rapid sequence learning in primates
表征和调节灵长类动物快速序列学习背后的运动皮层动力学
  • 批准号:
    10677450
  • 财政年份:
    2023
  • 资助金额:
    $ 2.05万
  • 项目类别:
Pioneering arithmetic topology around cyclotomic units and application to profinite rigidity
围绕分圆单元的开创性算术拓扑及其在有限刚度上的应用
  • 批准号:
    23K12969
  • 财政年份:
    2023
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Constraints, Rigidity, and Risk in Global Supply Chains
全球供应链的约束、刚性和风险
  • 批准号:
    2315629
  • 财政年份:
    2023
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了