Rigidity of discrete groups and index theorems
离散群的刚性和指数定理
基本信息
- 批准号:13640057
- 负责人:
- 金额:$ 2.18万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2001
- 资助国家:日本
- 起止时间:2001 至 2002
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The purpose of this project was to investigate the rigidity of discrete groups from the viewpoint of geometry of the ideal boundary of negatively curved spaces and the cohomology of discrete groups. Our main result is summarized as follows.Let Γ be a Kleinian group acting on n-sphere. If Γ is convex cocompact, the quotient of the domain of discontinuity is compact by definition. However, the converse is not true in general. Izeki (head investigator) showed that if the Hausdorff dimension of the limit set of Γ is less than n/2 and the quotient of the domain of discontinuity is compact, then Γ is convex cocompact. As a consequence, such a Γ is quasiconformally stable. We also gave several applications to topology and geometry of conformally flat manifolds with positive scalar curvature. In case the Hausdorff dimension of the limit set is less than (n - 2) /2, we found a proof using the index theorem for higher A-genus.We also developed another approach to rigidity problems, which uses harmonic maps from a simplicial complex to a negatively curved metric space. We obtained a fixed-point theorem for a lattice in a p-adic Lie group, which should be regarded as a generalization of Margulis superrigidity.
本课题从负弯曲空间的理想边界和离散群的上同调的几何角度研究了离散群的刚性。我们的主要结果总结如下。设Γ为作用于n球的Kleinian群。如果Γ是凸紧的,则不连续域的商根据定义是紧的。然而,相反的情况通常并不成立。Izeki(首席研究者)证明了如果Γ的极限集的Hausdorff维数小于n/2且不连续域的商是紧致的,则Γ是凸紧致的。因此,这样的Γ是准共形稳定的。我们还给出了正标量曲率共形平面流形的拓扑和几何的几个应用。在极限集的Hausdorff维数小于(n - 2) /2的情况下,利用高a属的指标定理给出了证明。我们还开发了另一种解决刚性问题的方法,它使用从简单复形到负弯曲度量空间的调和映射。我们得到了p进李群中格的不动点定理,它可以看作是马古利斯超刚性的推广。
项目成果
期刊论文数量(30)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
藤原 耕二: "On the outer automorphism group of a hyperbolic group"Israel J. of Math.. 131. 277-284 (2002)
藤原浩二:“论双曲群的外自同构群”Israel J. of Math.. 131. 277-284 (2002)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
井関 裕靖: "高次元のクライン群の極限集合のハウスドルフ次元-収束指数と凸ココンパクト性-"数理解析研究所講究録. 1223. 61-68 (2001)
Hiroyasu Iseki:“高维克莱因群极限集的豪斯多夫维数 - 收敛指数和凸协紧性 -”数学分析研究所 Kokyuroku。1223. 61-68 (2001)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Y.Nakagawa and T.Mabuchi: "An obstruction to semistability of manifolds"Proc. Japan Acad.. 77, Ser.A. 47-49 (2001)
Y.Nakakawa 和 T.Mabuchi:“对流形半稳定性的阻碍”Proc。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
納谷 信: "Quaternionic analogue of CR geometry(with H.kondo)"Semin.Theor.Spectr.Geom.. 19. 41-52 (2001)
Shin Naya:“CR 几何的四元模拟(与 H.kondo)”Semin.Theor.Spectr.Geom.. 19. 41-52 (2001)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Shin Nayatani: "Quaternionic analogue of CR geowetry"Seminalre de theorie spectrale et geometrie GRENOBLE. 19. 41-52 (2001)
Shin Nayatani:“CR 几何学的四元模拟”格勒诺布尔光谱与几何理论研讨会。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
IZEKI Hiroyasu其他文献
IZEKI Hiroyasu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('IZEKI Hiroyasu', 18)}}的其他基金
An approach to the superrigidity of infinite discrete groups via random groups
通过随机群求解无限离散群超刚性的方法
- 批准号:
25287013 - 财政年份:2013
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
New approach to discrete geometry --- capturing the shape of finite groups
离散几何的新方法——捕获有限群的形状
- 批准号:
24654016 - 财政年份:2012
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Rigidity and fixed-point property of finitely generated groups
有限生成群的刚性和定点性质
- 批准号:
21540062 - 财政年份:2009
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A differential geometric approach to discrete group theory
离散群论的微分几何方法
- 批准号:
18540062 - 财政年份:2006
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Combinatorial harmonic maps and a rigidity of discrete-group actions
组合调和映射和离散群作用的刚性
- 批准号:
15540056 - 财政年份:2003
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Discrete groups and geometry of ideal boundary
理想边界的离散群和几何
- 批准号:
11640056 - 财政年份:1999
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Group Actions, Rigidity, and Invariant Measures
群体行动、刚性和不变措施
- 批准号:
2400191 - 财政年份:2024
- 资助金额:
$ 2.18万 - 项目类别:
Standard Grant
Conference: Groups Actions and Rigidity: Around the Zimmer Program
会议:团体行动和刚性:围绕 Zimmer 计划
- 批准号:
2349566 - 财政年份:2024
- 资助金额:
$ 2.18万 - 项目类别:
Standard Grant
CAREER: Rigidity in Mapping class groups and homeomorphism groups
职业:映射类群和同胚群中的刚性
- 批准号:
2339110 - 财政年份:2024
- 资助金额:
$ 2.18万 - 项目类别:
Continuing Grant
THE ROLE OF MEDIUM SPINY NEURONS IN SLEEP DEPRIVATION-INDUCED COGNITIVE RIGIDITY.
中型棘神经元在睡眠剥夺引起的认知僵化中的作用。
- 批准号:
10656057 - 财政年份:2023
- 资助金额:
$ 2.18万 - 项目类别:
Transcutaneous Phrenic Nerve Stimulation for Treating Opioid Overdose
经皮膈神经刺激治疗阿片类药物过量
- 批准号:
10681111 - 财政年份:2023
- 资助金额:
$ 2.18万 - 项目类别:
The geometry, rigidity and combinatorics of spaces and groups with non-positive curvature feature
具有非正曲率特征的空间和群的几何、刚度和组合
- 批准号:
2305411 - 财政年份:2023
- 资助金额:
$ 2.18万 - 项目类别:
Standard Grant
Rigidity and boundary phenomena for geometric variational problems
几何变分问题的刚性和边界现象
- 批准号:
DE230100415 - 财政年份:2023
- 资助金额:
$ 2.18万 - 项目类别:
Discovery Early Career Researcher Award
Characterizing and modulating motor cortical dynamics underlying rapid sequence learning in primates
表征和调节灵长类动物快速序列学习背后的运动皮层动力学
- 批准号:
10677450 - 财政年份:2023
- 资助金额:
$ 2.18万 - 项目类别:
Pioneering arithmetic topology around cyclotomic units and application to profinite rigidity
围绕分圆单元的开创性算术拓扑及其在有限刚度上的应用
- 批准号:
23K12969 - 财政年份:2023
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Constraints, Rigidity, and Risk in Global Supply Chains
全球供应链的约束、刚性和风险
- 批准号:
2315629 - 财政年份:2023
- 资助金额:
$ 2.18万 - 项目类别:
Standard Grant