GINSPARG-WILSON関係式にもとづく標準模型の非摂動的な構成とε'/ε

基于GINSPARG-WILSON关系和ε/ε的标准模型的非微扰配置

基本信息

  • 批准号:
    12014207
  • 负责人:
  • 金额:
    $ 1.73万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas (A)
  • 财政年份:
    2000
  • 资助国家:
    日本
  • 起止时间:
    2000 至 无数据
  • 项目状态:
    已结题

项目摘要

今年度、我々は、素粒子の標準模型を与えるSU(3)_C×SU(2)_L×U(1)_Yカイラルゲージ理論のGinsparg-Wilson関係式にもとづく非摂動的な構成と(数値的)解析に関する研究を押し進めた。第一に、SU(2)_L×U(1)_Y電弱ゲージ理論におけるゲージアノマリーの相殺に関する研究を行い、格子上の電弱ゲージ理論においても、ハイパーチャージについての条件Σ_rrY_r=0およびΣ_rY^3_r=0が満されていれば、ゲージアノマリーが厳密に相殺することを示した。この研究ではLuscherの与えた6次元のトポロジカルな場のコホモロジーによる分類を行った。この6次元のトポロジカルな場は、一般に、SU(2)_L×U(1)_Yすべでのゲージ場に関してトポロジカルな性質をもつ。これをU(1)_Yについてのトポロジカルな場とみなし、コホモロジーの議論をもちいることで、U(1)_Yゲージ場の依存性を限定できた。これより、上記のハイパーチャージについての条件とSU(2)_Lの擬実性をもちいることにより、SU(2)_L×U(1)_Yの混合ゲージアノマリーの厳密な相殺の証明が可能になった。第二に、Kメソンの弱い相互作用による崩壊の確率振幅を、格子ゲージ理論を用いて数値的に計算する方法に関する研究をおこなった。Kメソンの崩壊振幅は、標準模型におけるCP不変性の破れをあたえる物理量、ε'/ε等、の計算に不可欠である。しがし、Euclid空間で定式化される格子ゲージ理論からは、直接、確率振幅を得ることはできないため、計算方法が確立していなかった。この問題に対して、最近、2つのπメソンからなる系のエネルギー固有値に現れる有限体積効果を用いると、Kメソンの崩壊振幅の計算が可能になることが明らかになった。この研究では、この方法が、2つのπメソンがゼロでない全運動量を持っている状態からなる部分空間に拡張できることを示した。この部分状態空間では、基底状態のエネルギーが有限体積効果をしめすため、エネルギー固有値から確率振幅を計算する際に、系統的な誤差をより小さくできると期待される。現在、理論的な検討がほぼ終わった段階であり、今後、格子ゲージ理論を用いた数値的な研究に進む計画である。
This year, I 々 は, plain の を standard model particles with え る SU (3) _C * SU (2) _L * U (1) _Y カ イ ラ ル ゲ ー ジ theory の Ginsparg - Wilson masato system type に も と づ く, touch of な と () of the numerical analytic に masato す を detain し る research into め た. First に, SU (2) _L * U (1) _Y electroweak ゲ ー ジ theory に お け る ゲ ー ジ ア ノ マ リ ー slay の に masato す る research on line を い, grid の electroweak ゲ ー ジ theory に お い て も, ハ イ パ ー チ ャ ー ジ に つ い て の conditions Σ _rrY_r = 0 お よ び Σ _rY ^ 3 _r = 0 が against さ れ て い れ ば, ゲ ー ジ ア ノ マ リ Youdaoplaceholder0 が厳 secret に kill each other する とを とを show た た. The <s:1> <s:1> studies the で を Luscher <s:1> and the えた 6-dimensional <s:1> トポロジカ な な field <e:1> コホモロジ による による による classification を rows った. こ の 6 yuan の ト ポ ロ ジ カ ル は な field, general に, SU (2) _L * U (1) _Y す べ で の ゲ ー ジ field に masato し て ト ポ ロ ジ カ ル な nature を も つ. こ れ を U (1) _Y に つ い て の ト ポ ロ ジ カ ル な field と み な し, コ ホ モ ロ ジ ー の comment を も ち い る こ と で, U (1) _Y ゲ ー の ジ field dependence を qualified で き た. こ れ よ り, written の ハ イ パ ー チ ャ ー ジ に つ い て の conditions と SU (2) _L の intends to be sexual を も ち い る こ と に よ り, SU (2) _L * U (1) _Y の mixed ゲ ー ジ ア ノ マ リ ー の 厳 dense slay な の may prove が に な っ た. Second に, K メ ソ ン の weak い interaction に よ る collapse 壊 の ゲ を of probability amplitude, grid ー を ジ theory with い て に of the numerical calculation す る method に masato す る research を お こ な っ た. K メ ソ ン の collapse は 壊 amplitude, the standard model に お け る CP - sexual の broken れ を あ た え る quantities, epsilon '/ epsilon, be calculated に の owe で あ る. し が し, Euclid space で demean さ れ る grid ゲ ー ジ theory か ら は, direct, probabilistic amplitude を る こ と は で き な い た め, calculation methods が establish し て い な か っ た. こ の problem に し seaborne て, recently, 2 つ の PI メ ソ ン か ら な る is の エ ネ ル ギ ー inherent numerical に now れ る finite volume unseen fruit を with い る と, K メ ソ ン の collapse 壊 amplitude の calculation が could に な る こ と が Ming ら か に な っ た. こ の research で は, こ の way が, 2 つ の PI メ ソ ン が ゼ ロ で な い full exercise を hold っ て い る state か ら な る part space に company, zhang で き る こ と を shown し た. こ の part state space で は, basal state の エ ネ ル ギ ー が finite volume unseen fruit を し め す た め, エ ネ ル ギ ー inherent numerical か ら を calculation of probability amplitude す る interstate な に, system error を よ り small さ く で き る と expect さ れ る. Now, the theory of な beg が 検 ほ ぼ eventually わ っ た Duan Jie で あ り, in the future, grid ゲ ー を ジ theory with い た the numerical に な research into む program で あ る.

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Y.Kikukawa,Y.Nakayawa: "Gauge Anomaly Cancellations in SU(2)_L×U(1)_Y Electroweak theory on the lattice"Nuclear Physics B. 597. 519-536 (2000)
Y. Kikukawa,Y. Nakayawa:“SU(2)_L×U(1)_Y 晶格电弱理论中的规范异常消除”核物理 B. 597. 519-536 (2000)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Y.Kikukawa: "Locality bound for effective four-dimensional action of domain-wall fermion"Nuclear Physics B. 584. 511-527 (2000)
Y.Kikukawa:“域壁费米子有效四维作用的局域性”核物理 B. 584. 511-527 (2000)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

菊川 芳夫其他文献

菊川 芳夫的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('菊川 芳夫', 18)}}的其他基金

第4世代による荷電共役パリティ対称性の破れとバリオン数非対称性の生成
第四代带电共轭宇称对称性的破缺和重子数不对称性的产生
  • 批准号:
    20039002
  • 财政年份:
    2008
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
格子カイラルゲージ理論の構成とゲージ対称性の自発的破れのダイナミクスの研究
格子手征规范理论的构建及规范对称性自发破缺动力学研究
  • 批准号:
    14046207
  • 财政年份:
    2002
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
カイラルフェルミオンの格子正則化にもとづく非摂動的記述とゲージ場のダイナミクス
基于晶格正则化和规范场动力学的手性费米子非微扰描述
  • 批准号:
    10740116
  • 财政年份:
    1999
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
格子正則化によるフェルミオン数非保存過程の非摂動的記述
使用晶格正则化对费米子数非守恒过程的非微扰描述
  • 批准号:
    10140214
  • 财政年份:
    1998
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas (A)
無限個の正則化場にもとづくカイラルゲージ理論の非摂動的定式化とその応用
基于无限正则场的手性规范理论的非微扰表述及其应用
  • 批准号:
    07740218
  • 财政年份:
    1995
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)

相似海外基金

カイラル対称性とヘビークォーク対称性に基づく有効理論を用いたハドロン質量起源探求
利用基于手性对称性和重夸克对称性的有效理论寻找强子质量的起源
  • 批准号:
    24K07045
  • 财政年份:
    2024
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
生体分子のカイラル対称性の破れを加速器で探る
使用加速器探索生物分子的手性对称性破缺
  • 批准号:
    23K17690
  • 财政年份:
    2023
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
核媒質中のK中間子とカイラル対称性の部分的回復におけるストレンジネスの役割
奇异性在核介质中 kaons 和手性对称性部分恢复中的作用
  • 批准号:
    20J20598
  • 财政年份:
    2020
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
重いクォークを含むハドロンによる、核物質中でのカイラル対称性の探求
使用含有重夸克的强子探索核材料的手性对称性
  • 批准号:
    17J05638
  • 财政年份:
    2017
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
陽子ビームを用いたパイ中間子原子の分光によるカイラル対称性の研究
使用质子束通过π介子原子光谱研究手性对称性
  • 批准号:
    16J02632
  • 财政年份:
    2016
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
量子色力学に基づくクォークの閉じ込めとカイラル対称性及び多彩な相構造の研究
基于量子色动力学的夸克禁闭、手性对称性和各种相结构研究
  • 批准号:
    15J02108
  • 财政年份:
    2015
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
カイラル対称性の部分的回復の定量評価を目的としたパイオンの深い束縛状態の精密測定
精确测量π介子的深度束缚态以定量评估手性对称性的部分恢复
  • 批准号:
    12J08538
  • 财政年份:
    2012
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
格子ゲージ理論における厳密なカイラル対称性とその量子論的性質の解明に関する研究
格子规范理论中严格手性对称性的研究及其量子性质的阐明
  • 批准号:
    11J10112
  • 财政年份:
    2011
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
厳密なカイラル対称性をもつ格子理論による量子色力学の精密シミュレーション
使用具有严格手性对称性的晶格理论精确模拟量子色动力学
  • 批准号:
    21244039
  • 财政年份:
    2009
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
カイラル対称性を持つ相対論的平均場によるハイパー核と高密度天体現象の研究
使用具有手征对称性的相对论平均场研究超核和致密天文现象
  • 批准号:
    08J04326
  • 财政年份:
    2008
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了