Electron Beam Lithography Tool

电子束光刻工具

基本信息

  • 批准号:
    530414946
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    德国
  • 项目类别:
    Major Research Instrumentation
  • 财政年份:
    2023
  • 资助国家:
    德国
  • 起止时间:
    2022-12-31 至 无数据
  • 项目状态:
    未结题

项目摘要

Electron beam lithography is the most flexible, most versatile, high performance lithography technique for the realization of nanostructures down to the sub-10 nanometer regime. Due to a relatively small foot print of state-of-the-art instruments and moderate cost of ownership it is ideally suited for academic nanotechnology labs such as the Central Laboratory for Micro- and Nanotechnology, the central clean-room facility at RWTH Aachen University providing micro- and nanofabrication technologies for internal as well as external users. While there are two systems for electron beam lithography currently available at the Central Laboratory for Micro- and Nanotechnology, the existing tools cannot fulfil the demands of current and future research projects. In particular, the (wafer-scale) fabrication of complex mask patterns as well as the patterning of structures that straddle several write fields have been proven to be inappropriate or even impossible to achieve. The reasons for this include an inadequate pattern generator that cannot handle the large amount of data required for complex patterns and a too large stitching error. Moreover, the restricted acceleration voltage of the existing tools (a maximum of 30 kilovolts) limits the resolution and yields a substantial proximity effect. In many cases the latter cannot be corrected since the necessary, elaborate proximity correction results in such complex mask patterns that cannot be handled by the pattern generator. Finally, the limited acceleration voltage also leads to a charge-up of insulating substrates resulting in significant shifts and distortion of the intended patterns. While a reduced proximity effect and an obviation of the charge-up of insulating substrates can be achieved with rather low acceleration voltages, the lithographic resolution in this case is strongly degraded and requires very thin resist layers that are often unsuitable for etch- and lift-off processes. In addition to the scientific/technical issues of the existing two electron beam lithography tools, both are based on a scanning electron microscopy column which is not manufactured anymore. Thus, access to spare parts is only guaranteed as long as they are available and on stock of the tool manufacturer. Therefore, the Central Laboratory for Micro- and Nanotechnology will sooner or later be incapable of providing electron beam lithography, i.e. the central nanopatterning technique. As a result, funding for a new, state-of-the-art electron beam lithography tool with 100 kilovolts acceleration voltage, minimal stitching errors and capable of handling complex mask patterns is requested, that provides CMNT with the necessary nanoscale lithography capabilities to carry out research projects for the coming years.
电子束光刻是实现纳米结构的最灵活、最通用、高性能的光刻技术,其精度可达10纳米以下。由于尖端仪器的占地面积相对较小,拥有成本适中,它非常适合学术纳米技术实验室,如RWTH亚琛大学的微和纳米技术中央实验室,该中心为内部和外部用户提供微和纳米加工技术。虽然微纳技术中心实验室目前有两套电子束光刻系统,但现有工具不能满足当前和未来研究项目的需要。特别是,复杂掩模图案的(晶片规模)制造以及跨几个写入场的结构的图案化已被证明是不合适的,甚至是不可能实现的。出现这种情况的原因包括图案生成器不足,无法处理复杂图案所需的大量数据,以及拼接错误太大。此外,现有工具的有限加速电压(最大30千伏)限制了分辨率,并产生了相当大的接近效应。在许多情况下,后者不能被校正,因为必要的、精细的邻近校正导致无法由图案生成器处理的如此复杂的掩模图案。最后,有限的加速电压还会导致绝缘基板的充电,从而导致预期图案的显著漂移和变形。虽然可以在相当低的加速电压下实现减少邻近效应和减少绝缘衬底的充电,但这种情况下的光刻分辨率严重下降,并且需要非常薄的抗蚀剂层,这通常不适合蚀刻和剥离工艺。除了现有的两种电子束光刻工具的科学/技术问题外,这两种工具都是基于扫描电子显微镜柱,该柱已不再制造。因此,只有在备品备件可供使用且工具制造商有库存的情况下,才能保证获得备品备件。因此,微纳技术中心实验室迟早将无法提供电子束光刻,即中央纳米刻蚀技术。因此,需要为一种新的、最先进的电子束光刻工具提供资金,该工具具有100千伏的加速电压、最小的缝合误差和能够处理复杂掩模图案的能力,为CMNT提供必要的纳米级光刻能力,以便在未来几年开展研究项目。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

完全共振高次带导数Beam方程的拟周期解研究
  • 批准号:
    12301229
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
基于CPU+多GPU构架的图像引导放疗低剂量Cone Beam CT高质量重建系统的研究
  • 批准号:
    81803056
  • 批准年份:
    2018
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
基于SiPM的高性能In-Beam TOF-PET的研究
  • 批准号:
    11475234
  • 批准年份:
    2014
  • 资助金额:
    100.0 万元
  • 项目类别:
    面上项目

相似海外基金

NSF MRI Track 2: Acquisition of an Electron Beam Lithography and Imaging System for Research, Education, and Training
NSF MRI 轨道 2:采购用于研究、教育和培训的电子束光刻和成像系统
  • 批准号:
    2320098
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Development of new main group resists for electron beam lithography and direct writing of nanostructures
开发用于电子束光刻和纳米结构直接写入的新型主族抗蚀剂
  • 批准号:
    2905753
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Electron beam lithography (EBL) system for nanofabrication of structures and devices
用于结构和器件纳米制造的电子束光刻 (EBL) 系统
  • 批准号:
    470088514
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Major Research Instrumentation
BRITE Synergy: Transforming Electron Beam Lithography with Reactive Gases
BRITE Synergy:利用活性气体改变电子束光刻技术
  • 批准号:
    2135666
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
MRI: Acquisition of an Electron Beam Lithography System for Quantum Engineering and Nanoscience Research, Education and Training
MRI:采购用于量子工程和纳米科学研究、教育和培训的电子束光刻系统
  • 批准号:
    2215550
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
electron beam lithography tool for 3D-nanoscale extremely high frequency components
用于 3D 纳米级极高频元件的电子束光刻工具
  • 批准号:
    491044589
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Major Research Instrumentation
MRI: Acquisition of an Electron-Beam Lithography Tool for Research, Education and Training
MRI:获取用于研究、教育和培训的电子束光刻工具
  • 批准号:
    2117775
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Electron-beam lithography system
电子束光刻系统
  • 批准号:
    490736786
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Major Research Instrumentation
Electron-beam lithography system
电子束光刻系统
  • 批准号:
    460700859
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Major Research Instrumentation
MRI: Acquisition of Electron Beam Lithography System for Next-Generation Nanomanufacturing and Education
MRI:采购用于下一代纳米制造和教育的电子束光刻系统
  • 批准号:
    2018876
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了