Function spaces on fractals, and envelopes

分形和包络上的函数空间

基本信息

项目摘要

The precondition for a Heisenberg Programme funding is high scientific quality and originality of the research project at international level and suitability for further qualification as a university teacher. Applicants need to meet all the requirements for appointment to a permanent professorship.The aim of this programme is to enable outstanding scientists to prepare for a scientific leadership function, and simultaneously work on further research topics. This research does not necessarily need to be planned and carried out in the form of a project.For this reason, and unlike the procedure in other funding programmes, both the abstracts of applications and final reports are not required and will therefore not be published in GEPRIS.
海森堡方案资助的先决条件是国际上研究项目的高科学质量和原创性,以及是否适合进一步获得大学教师资格。申请者需要满足被任命为永久教授的所有要求。该计划的目的是使杰出的科学家能够为科学领导职能做准备,同时在进一步的研究课题上工作。这项研究不一定需要以项目的形式规划和进行,因此,与其他资助方案的程序不同,这项研究不需要申请摘要和最终报告,因此不会在GEPRIS中公布。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professorin Dr. Dorothee Haroske其他文献

Professorin Dr. Dorothee Haroske的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professorin Dr. Dorothee Haroske', 18)}}的其他基金

The Real-Variable Theory of Function Spaces and its Applications
函数空间实变量理论及其应用
  • 批准号:
    392255916
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Wavelets and function spaces on domains
小波和域上的函数空间
  • 批准号:
    93878115
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

Bergman空间上的Toeplitz算子及Hankel算子的性质
  • 批准号:
    11126061
  • 批准年份:
    2011
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目
分形上的分析及其应用
  • 批准号:
    10471150
  • 批准年份:
    2004
  • 资助金额:
    15.0 万元
  • 项目类别:
    面上项目

相似海外基金

Opening Spaces and Places for the Inclusion of Indigenous Knowledge, Voice and Identity: Moving Indigenous People out of the Margins
为包容土著知识、声音和身份提供开放的空间和场所:使土著人民走出边缘
  • 批准号:
    477924
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Salary Programs
Logarithmic enumerative geometry and moduli spaces
对数枚举几何和模空间
  • 批准号:
    EP/Y037162/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
INSPIRE- Intersectional Spaces of Participation: Inclusive, Resilient, Embedded
INSPIRE-交叉参与空间:包容性、弹性、嵌入式
  • 批准号:
    10106857
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    EU-Funded
LIB Sparks - Gases, sparks and flames - a numerical study of lithium-ion battery failure in closed spaces and its mitigation
LIB Sparks - 气体、火花和火焰 - 封闭空间内锂离子电池故障及其缓解的数值研究
  • 批准号:
    EP/Y027639/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship
DDRIG: Cementing Spaces: The Material That Made Room for New Cultures in the Twentieth-Century
DDRIG:水泥空间:为二十世纪新文化腾出空间的材料
  • 批准号:
    2341731
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Shared Spaces: The How, When, and Why of Adolescent Intergroup Interactions
共享空间:青少年群体间互动的方式、时间和原因
  • 批准号:
    ES/T014709/2
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
INSPIRE - Intersectional Spaces of Participation: Inclusive, Resilient, Embedded
INSPIRE - 交叉参与空间:包容性、弹性、嵌入式
  • 批准号:
    10091666
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    EU-Funded
Geometric evolution of spaces with symmetries
具有对称性的空间的几何演化
  • 批准号:
    DP240101772
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Spread through air spaces (STAS) の分子学的特性と発現機序の解明
阐明空气传播(STAS)的分子特征和表达机制
  • 批准号:
    24K19434
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
The Other Rome: Centring People and Spaces of Maintenance
另一个罗马:以人员和维护空间为中心
  • 批准号:
    AH/Y000277/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了