可積分な固有値計算アルゴリズムによる重複固有値計算の漸近解析

使用可积特征值计算算法进行重复特征值计算的渐近分析

基本信息

  • 批准号:
    14J06045
  • 负责人:
  • 金额:
    $ 1.22万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
  • 财政年份:
    2014
  • 资助国家:
    日本
  • 起止时间:
    2014-04-25 至 2016-03-31
  • 项目状态:
    已结题

项目摘要

可積分な離散戸田方程式との対応が知られているquotient-difference (qd) 法は、3重対角行列の固有値計算アルゴリズムとして著名であり、改良型のdqds法がLAPACKに実装され国際標準となっている。近年、こうした離散可積分系と数値計算アルゴリズムとの関係が注目されており、離散可積分系に基づいた「可積分アルゴリズム」と呼ばれる数値計算アルゴリズムが提案されている。本研究では、行列固有値計算のための可積分アルゴリズムに対して、行列が重複固有値をもつ場合の収束性等の性質を調べた。上記の研究の発展として、平成26年度は離散可積分系と行列の逆固有値問題との対応を新たに発見した。逆固有値問題の重要な研究課題の1つとして、指定した固有値をもつ行列を構成するという問題がある。すべての小行列式が非負であるtotally nonnegative (TN) 行列の固有値計算アルゴリズムとしてdhToda法がある。dhToda法は、離散戸田方程式のある種の拡張である離散ハングリー戸田方程式の離散時間変数の発展に着目して定式化されている。そこで、離散ハングリー戸田方程式の離散空間変数の発展に着目して、ヘッセンベルグ型のTN行列に対する逆固有値問題の解法を構成し提案した。平成27年度は、平成26年度に引き続き、TN行列の逆固有値問題に離散可積分系の観点から取り組んだ。離散ハングリー戸田方程式を拡張させた拡張型離散ハングリー戸田方程式を新たに導出することで、任意の帯幅をもつTN行列に対する逆固有値問題の解法の開発に成功している。この成果は、2015年10月にアメリカ・アトランタで行われたSIAM Conference on Applied Linear Algebraにて講演を行った。また、国際学術論文誌Numerical Algorithmsに講演成果をまとめて投稿中である。
The integral discrete equation and the corresponding equation are known as the quotient-difference (qd) method, the three-fold angular array and the inherent value calculation are known as the improved dqds method and the LAPACK method are installed in the international standard. In recent years, discrete integrable systems and numerical value calculations have been discussed. In this paper, we study the properties of the integrality, convergence and so on in the calculation of the inherent value of rows and columns. The development of the above research is described in detail below. In 2006, the discrete integrable system and the inverse eigenvalues of columns were discovered. An important research topic of inverse intrinsic value problem is to specify the intrinsic value of the problem. The method of calculating the intrinsic value of a column is called "totally nonnegative"(TN). dhToda method is used to formulate the discrete time evolution of the discrete field equation. A method for solving inverse eigenvalues of discrete space equations is proposed. Heisei 27 years, Heisei 26 years cited, TN row inverse eigenvalue problem, discrete integrable system of points A new method for solving the inverse eigenvalues problem of discrete equations is developed successfully. The results were presented at the SIAM Conference on Applied Linear Algebra in October 2015. International Academic Journal Numerical Algorithms

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
TN行列の逆固有値問題と離散可積分系
TN矩阵与离散可积系统的反特征值问题
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    吉田 晃;赤岩 香苗;近藤 弘一;佐々木恭志郎;佐々木恭志郎・山田祐樹・黒木大一朗・三浦佳世;赤岩香苗
  • 通讯作者:
    赤岩香苗
離散ハングリー戸田方程式に関連づくTotally Nonnegative行列の逆固有値問題について
关于离散Hungry Toda方程的全非负矩阵的反特征值问题
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    赤岩 香苗;中村 佳正;岩崎 雅史;近藤 弘一;佐々木恭志郎;赤岩 香苗
  • 通讯作者:
    赤岩 香苗
Discrete integrable systems solve inverse eigenvalue problems for totally nonnegative matrices
离散可积系统求解全非负矩阵的反特征值问题
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sasaki;K.;Yamada;Y.;Miura;K.;佐々木恭志郎・山田祐樹・三浦佳世;Kanae Akaiwa
  • 通讯作者:
    Kanae Akaiwa
拡張型離散ハングリー戸田方程式の一般解と全非負逆固有値問題への応用
扩展离散Hungry Toda方程的通解及其在全非负逆特征值问题中的应用
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    吉田 晃;赤岩 香苗;近藤 弘一
  • 通讯作者:
    近藤 弘一
TN行列の逆固有値問題の離散ハングリー戸田方程式による有限ステップ解法について
基于离散Hungry Toda方程的TN矩阵反特征值问题的有限步求解
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    赤岩 香苗;中村 佳正;岩崎 雅史;堤 久宜;近藤 弘一
  • 通讯作者:
    近藤 弘一
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

赤岩 香苗其他文献

離散可積分系から見る行列の逆固有値問題
从离散可积系统看矩阵的逆特征值问题
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    赤岩 香苗;前田 一貴;赤岩 香苗
  • 通讯作者:
    赤岩 香苗
離散2次元戸田方程式に基づく逆固有値問題の解法を用いた帯TN行列の作成
使用基于离散二维 Toda 方程的反特征值问题的解创建带状 TN 矩阵
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    岡鼻 小春;赤岩 香苗
  • 通讯作者:
    赤岩 香苗
ある種の帯行列の逆固有値問題の解法について
关于某些带状矩阵的逆特征值问题的求解
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    赤岩 香苗;前田 一貴
  • 通讯作者:
    前田 一貴
Totally nonnegativeなLaurent-Jacobi行列の逆固有値問題の解法について
关于全非负Laurent-Jacobi矩阵的反特征值问题的求解
空間と感情 三浦佳世 (編) 感性認知-アイステーシスの心理学-
空间与情感 Kayo Miura (ed.) 敏感认知 - Aisthesis 心理学 -
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    赤岩 香苗;中村 佳正;岩崎 雅史;堤 久宜;近藤 弘一;佐々木恭志郎
  • 通讯作者:
    佐々木恭志郎

赤岩 香苗的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('赤岩 香苗', 18)}}的其他基金

工学的応用を起点とする可積分系および直交多項式の研究
从工程应用出发的可积系统与正交多项式研究
  • 批准号:
    21K13843
  • 财政年份:
    2021
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
新たな離散可積分系の導出と逆固有値問題への応用
新离散可积系统的推导及其在反特征值问题中的应用
  • 批准号:
    17K18229
  • 财政年份:
    2017
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)

相似海外基金

制約付き固有値問題に基づく局所潜在空間生成とその大規模分散データ解析への応用
基于约束特征值问题的局部潜在空间生成及其在大规模分布式数据分析中的应用
  • 批准号:
    23K28101
  • 财政年份:
    2024
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
無限次元固有値問題に対する複素モーメント型解法および数理的リスク回避技術の開発
无限维特征值问题复矩型求解方法及数学风险规避技术开发
  • 批准号:
    23K21673
  • 财政年份:
    2024
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
制約付き固有値問題に基づく局所潜在空間生成とその大規模分散データ解析への応用
基于约束特征值问题的局部潜在空间生成及其在大规模分布式数据分析中的应用
  • 批准号:
    23H03411
  • 财政年份:
    2023
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
有限自由度離散ソリトン理論の確立と逆固有値問題の新たな解法の開発
有限自由度离散孤子理论的建立及逆特征值问题求解新方法的发展
  • 批准号:
    23K03223
  • 财政年份:
    2023
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
pラプラシアンの固有値問題と関連する楕円積分の研究
p-拉普拉斯及相关椭圆积分的特征值问题研究
  • 批准号:
    22K03392
  • 财政年份:
    2022
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
複合媒質における固有値問題と最適コーティング形状の解析
复杂介质中的特征值问题和最佳涂层形状分析
  • 批准号:
    21K13822
  • 财政年份:
    2021
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
非線形楕円型方程式の固有値問題と逆問題の精密解析
非线性椭圆方程特征值问题和反问题的精确分析
  • 批准号:
    21K03310
  • 财政年份:
    2021
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Macdonald及びRuijsenaars作用素に対する固有値問題の代数的解析
Macdonald 和 Ruijsenaars 算子特征值问题的代数分析
  • 批准号:
    21K13803
  • 财政年份:
    2021
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
最適コーティングと特異摂動固有値問題
最优涂层与奇异摄动特征值问题
  • 批准号:
    19J12344
  • 财政年份:
    2019
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
アフィンルート系に付随する多重超幾何級数・遮蔽作用素・楕円可積分系の固有値問題
与仿射根系统相关的多个超几何级数、屏蔽算子和椭圆可积系统的特征值问题
  • 批准号:
    19K03512
  • 财政年份:
    2019
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了