Advanced Analysis on Evolving Patterns in Nonlinear Phenomena Driven by Singular Structure

奇异结构驱动的非线性现象演化模式的高级分析

基本信息

  • 批准号:
    26220702
  • 负责人:
  • 金额:
    $ 99.67万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
  • 财政年份:
    2014
  • 资助国家:
    日本
  • 起止时间:
    2014-05-30 至 2019-03-31
  • 项目状态:
    已结题

项目摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Coefficient inverse problems for integro-partial differential equations by Carleman estimates: viscoelasticity, Inverse Problems and Related Topics
卡尔曼估计的积分偏微分方程的系数反问题:粘弹性、反问题和相关主题
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    藤垣匠;高木信一;竹中充;Y.Akaike et al. (CALET Collaboration);奥村弘;M. Yamamoto
  • 通讯作者:
    M. Yamamoto
幾何学的測度論を用いた平均曲率流の時間大域存在定理
基于几何测度理论的平均曲率流时间全局存在定理
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Pathak;Prashant; Guyon;Olivier; Jovanovic;Nemanja; Lozi;Julien; Martinache;F.; Minowa;Y.; Kudo;T.; Takami;H.; Hayano;Y.; Narita;N.;セルゲイ・チェルニャフスキー;松下正和;利根川吉廣
  • 通讯作者:
    利根川吉廣
The vanishing discount problem and viscosity Mather measures
折扣消失问题和粘度马瑟测量
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    B. Abelev;…;T. Chujo;S. Esumi;Y. Miake (ALICE Collaboration);藤部文昭;H. Ishii
  • 通讯作者:
    H. Ishii
The 40th Sapporo Symposium on Partial Differential Equations
第40届札幌偏微分方程研讨会
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Mathematical analysis for inverse problems: around the viscoelasticity
反问题的数学分析:围绕粘弹性
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Currie;Thayne; Guyon;Olivier; Martinache;Frantz; Clergeon;Christophe; McElwain;Michael; Thalmann;Christian; Jovanovic;Nemanja; Singh;Garima; Kudo;Tomoyukilergeon;Michael McElwain;Christian Thalmann;Nemanja Jovanovic;Garima Singh;Tomoyuki Kud;Shibayama Mamoru (ed.);M. Yamamoto
  • 通讯作者:
    M. Yamamoto
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

GIGA Yoshikazu其他文献

GIGA Yoshikazu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('GIGA Yoshikazu', 18)}}的其他基金

Viscosity solutions on metric spaces
度量空间上的粘度解
  • 批准号:
    25610025
  • 财政年份:
    2013
  • 资助金额:
    $ 99.67万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Development of Analysis on Evolving Pattern for Complicated Phenomena
复杂现象演化模式分析的进展
  • 批准号:
    21224001
  • 财政年份:
    2009
  • 资助金额:
    $ 99.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
Structures created and preserved in nonlinear diffusion field
在非线性扩散场中创建和保存的结构
  • 批准号:
    18204011
  • 财政年份:
    2006
  • 资助金额:
    $ 99.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Mathematical Analysis on Change of Patterns by Anisotropy and Diffusion
各向异性和扩散引起的图案变化的数学分析
  • 批准号:
    14204011
  • 财政年份:
    2002
  • 资助金额:
    $ 99.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Nonlinear Analysis on diffusion effects producing singular shapes
产生奇异形状的扩散效应的非线性分析
  • 批准号:
    10304010
  • 财政年份:
    1998
  • 资助金额:
    $ 99.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Analysis on Nonlinear Partial Differential Equations
非线性偏微分方程分析
  • 批准号:
    05452009
  • 财政年份:
    1993
  • 资助金额:
    $ 99.67万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (B)

相似国自然基金

Hamilton-Jacobi方程粘性解在扰动下的收敛性
  • 批准号:
    12301228
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Hamilton-Jacobi方程粘性解的稳定性及相关问题
  • 批准号:
    12301233
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
切触哈密顿-雅可比方程的粘性解研究
  • 批准号:
    22ZR1433100
  • 批准年份:
    2022
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
随机微分方程与偏微分方程粘性解的随机表达
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
完全非线性随机偏微分方程的随机粘性解
  • 批准号:
    12271103
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目
关于接触Hamilton-Jacobi方程粘性解的奇性传播
  • 批准号:
    11801223
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
接触Hamilton系统与一类偏微分方程粘性解的奇性传播
  • 批准号:
    11771283
  • 批准年份:
    2017
  • 资助金额:
    48.0 万元
  • 项目类别:
    面上项目
正倒向随机微分方程次优控制粘性解方法之研究
  • 批准号:
    11701040
  • 批准年份:
    2017
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
discounted Hamilton-Jacobi 方程粘性解收敛性的研究
  • 批准号:
    11726602
  • 批准年份:
    2017
  • 资助金额:
    10.0 万元
  • 项目类别:
    数学天元基金项目
基于粘性解的随机时滞方程最优控制问题研究
  • 批准号:
    11401474
  • 批准年份:
    2014
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

粘性解を用いたJ方程式の弱解理論の構築および非一様J安定な多様体への応用
使用粘性解构建 J 方程弱理论及其在非均匀 J 稳定流形中的应用
  • 批准号:
    24KJ0346
  • 财政年份:
    2024
  • 资助金额:
    $ 99.67万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
完全非線形方程式の粘性解の正則性理論とその応用
完全非线性方程粘性解的正则理论及其应用
  • 批准号:
    23K20224
  • 财政年份:
    2024
  • 资助金额:
    $ 99.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
完全非線形微分積分方程式における粘性解の正則性
全非线性微分和积分方程中粘性解的正则性
  • 批准号:
    21J10020
  • 财政年份:
    2021
  • 资助金额:
    $ 99.67万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
完全非線形放物型方程式の粘性解理論の深化
深化全非线性抛物型方程的粘度解理论
  • 批准号:
    20J00314
  • 财政年份:
    2020
  • 资助金额:
    $ 99.67万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
完全非線形放物型方程式の粘性解理論の新展開
全非线性抛物型方程粘度解理论的新进展
  • 批准号:
    20K14340
  • 财政年份:
    2020
  • 资助金额:
    $ 99.67万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
距離空間上の粘性解の基礎と応用
度量空间上粘度解的基础和应用
  • 批准号:
    19K14566
  • 财政年份:
    2019
  • 资助金额:
    $ 99.67万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
均質化問題と分数冪時間微分を持つ方程式の粘性解理論
具有均质化问题和分数幂时间导数的方程的粘性解理论
  • 批准号:
    16J03422
  • 财政年份:
    2016
  • 资助金额:
    $ 99.67万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
完全非線形放物型方程式の粘性解理論
全非线性抛物型方程的粘性解理论
  • 批准号:
    16J02399
  • 财政年份:
    2016
  • 资助金额:
    $ 99.67万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Nonlinear dynamics and pattern formation in crystal growth from a highly viscous solution film
高粘性溶液膜晶体生长的非线性动力学和图案形成
  • 批准号:
    26400407
  • 财政年份:
    2014
  • 资助金额:
    $ 99.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
粘性解理論とその材料科学分野への応用
粘性溶液理论及其在材料科学领域的应用
  • 批准号:
    14J30001
  • 财政年份:
    2014
  • 资助金额:
    $ 99.67万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了