Wearable magnetoencephalography (MEG): The next-generation of dynamic human neuroimaging

可穿戴脑磁图 (MEG):下一代动态人类神经成像

基本信息

  • 批准号:
    10440948
  • 负责人:
  • 金额:
    $ 145万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-04-01 至 2023-03-31
  • 项目状态:
    已结题

项目摘要

Project Summary/Abstract The Omaha magnetoencephalography (MEG) site is home to one of the most productive, internationally-known MEG groups in the world. In 2020 alone, they published over 30 peer-reviewed MEG-centric publications, had numerous major NIH awards, and made high impact discoveries spanning multiple areas of human neuroscience. MEG is an advanced method for noninvasively imaging population-level neurophysiological activity with high temporal (< 1 ms) and spatial precision (2-3 mm). Application of the method has expanded substantially over the past decade due to technical advancements and the growing interest in neural oscillations, dynamic connectivity, and other metrics where spatiotemporal precision is extremely important. The Omaha MEG group has had a major role in this growth and continues to lead the way in many areas of MEG research, often exceeding all other MEG sites on major measures of scientific productivity and impact. However, this group is now at a crossroads where their future growth, and even existence, is threatened by a revolutionary paradigm shift in the field of neurophysiological imaging, and a worldwide helium shortage. Briefly, conventional MEG systems are large and stationary, requiring research participants to sit as still as possible for extended periods of time while undergoing recordings. This creates major challenges for acquiring data in specific patient populations and young children. Further, the dimensions of the sensor array are fixed within the MEG helmet, which is designed to accommodate 98% of adults. This translates into large gaps between the scalp surface and the sensor array in young children and huge gaps in infants. Since the strength of magnetic fields fall off exponentially with increasing distance from the current source (i.e., active neural populations), the net impact of this is strongly attenuated neural responses in children and infants and thus poor precision. Additionally, conventional MEG requires liquid helium to support superconducting temperatures, which is not only very expensive but also increasingly difficult to obtain in the current era of helium shortages. Given these concerns, we are proposing to purchase a state-of-the-art optically- pumped magnetometry (OPM) system. The idea of OPM has been around for decades, but major breakthroughs through President Obama’s BRAIN Initiative have moved the technology from a physics experiment to cutting edge applications in neuroscience. OPM is the future of MEG, as it overcomes the key limitations of conventional systems and in most cases offers superior precision. Specifically, OPM: (1) does not require liquid helium and thus sensors can be placed directly on the scalp for optimal sensitivity, (2) can be fitted to any head size, including pediatric and infant populations, and (3) allows participants to move relatively freely during recordings, making the system ideal for developmental and clinical populations, as well as naturalistic experiments (e.g., walking). Thus, OPM is a significant, major step forward and will give rise to a whole new era of functional imaging. With this technology, the Omaha MEG group will remain at the forefront of discovery in several major topic areas that are described in the proposal and of clear interest to the NIH and the translational neuroscience community.
项目概要/摘要 奥马哈脑磁图 (MEG) 站点是最具生产力、国际知名的站点之一 世界各地的 MEG 集团。仅在 2020 年,他们就出版了 30 多篇以 MEG 为中心的同行评审出版物, 获得了众多 NIH 重大奖项,并在人类神经科学的多个领域取得了具有重大影响的发现。 MEG 是一种对人群水平神经生理活动进行无创成像的先进方法,具有高 时间(< 1 ms)和空间精度(2-3 mm)。该方法的应用已大大扩展 过去十年,由于技术进步以及人们对神经振荡、动态连接的兴趣日益增长, 以及时空精度极其重要的其他指标。奥马哈 MEG 小组有一个 在这一增长中发挥着重要作用,并继续在 MEG 研究的许多领域处于领先地位,通常超过所有其他领域 MEG 致力于衡量科学生产力和影响力的主要指标。然而,这个群体现在正处于十字路口 他们未来的增长,甚至存在,都受到领域内革命性范式转变的威胁。 神经生理学成像和全球氦气短缺。简而言之,传统的 MEG 系统体积庞大且 固定,要求研究参与者在进行实验时尽可能长时间地坐着不动 录音。这给获取特定患者群体和幼儿的数据带来了重大挑战。 此外,传感器阵列的尺寸固定在 MEG 头盔内,旨在适应 98%的成年人。这会导致幼儿头皮表面和传感器阵列之间存在较大间隙 以及婴儿的巨大差距。由于磁场强度随着距离的增加呈指数下降 当前源(即活跃的神经群体),其净影响是神经反应强烈减弱 在儿童和婴儿中,因此精度较差。此外,传统的 MEG 需要液氦来支持 超导温度不仅非常昂贵,而且在工业中获得也越来越困难 当前氦气短缺的时代。考虑到这些问题,我们建议购买最先进的光学- 泵浦磁力测量(OPM)系统。 OPM的想法已经存在了几十年,但取得了重大突破 通过奥巴马总统的大脑计划,该技术已从物理实验转向了切割 神经科学中的边缘应用。 OPM 是 MEG 的未来,因为它克服了传统方法的关键限制 系统,并且在大多数情况下提供卓越的精度。具体来说,OPM:(1)不需要液氦并且 因此,传感器可以直接放置在头皮上以获得最佳灵敏度,(2) 可以适合任何头部尺寸,包括 儿科和婴儿群体,以及(3)允许参与者在录音期间相对自由地移动,使得 该系统非常适合发育和临床人群以及自然实验(例如步行)。 因此,OPM 是向前迈出的重要一步,并将开创功能成像的全新时代。和 这项技术,奥马哈 MEG 小组将在几个主要主题领域保持在发现的最前沿, 提案中对此进行了描述,并且 NIH 和转化神经科学界对此非常感兴趣。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tony W Wilson其他文献

Tony W Wilson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tony W Wilson', 18)}}的其他基金

Administrative Core
行政核心
  • 批准号:
    10346724
  • 财政年份:
    2022
  • 资助金额:
    $ 145万
  • 项目类别:
Administrative Core
行政核心
  • 批准号:
    10580768
  • 财政年份:
    2022
  • 资助金额:
    $ 145万
  • 项目类别:
Center for Pediatric Brain Health
儿科脑健康中心
  • 批准号:
    10798920
  • 财政年份:
    2022
  • 资助金额:
    $ 145万
  • 项目类别:
Alteration and Renovation
改建和翻新
  • 批准号:
    10346723
  • 财政年份:
    2022
  • 资助金额:
    $ 145万
  • 项目类别:
Suppression of Pathological Spontaneous Cortical Dynamics and Inflammation in NeuroHIV
NeuroHIV 病理性自发皮质动力学和炎症的抑制
  • 批准号:
    10590619
  • 财政年份:
    2022
  • 资助金额:
    $ 145万
  • 项目类别:
Neural Quantification & Imaging Core
神经量化
  • 批准号:
    10580773
  • 财政年份:
    2022
  • 资助金额:
    $ 145万
  • 项目类别:
Center for Pediatric Brain Health
儿科脑健康中心
  • 批准号:
    10346722
  • 财政年份:
    2022
  • 资助金额:
    $ 145万
  • 项目类别:
Center for Pediatric Brain Health
儿科脑健康中心
  • 批准号:
    10580767
  • 财政年份:
    2022
  • 资助金额:
    $ 145万
  • 项目类别:
Neural Quantification & Imaging Core
神经量化
  • 批准号:
    10346725
  • 财政年份:
    2022
  • 资助金额:
    $ 145万
  • 项目类别:
Suppression of Pathological Spontaneous Cortical Dynamics and Inflammation in NeuroHIV
NeuroHIV 病理性自发皮质动力学和炎症的抑制
  • 批准号:
    10472343
  • 财政年份:
    2022
  • 资助金额:
    $ 145万
  • 项目类别:

相似国自然基金

层出镰刀菌氮代谢调控因子AreA 介导伏马菌素 FB1 生物合成的作用机理
  • 批准号:
    2021JJ40433
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
寄主诱导梢腐病菌AreA和CYP51基因沉默增强甘蔗抗病性机制解析
  • 批准号:
    32001603
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
AREA国际经济模型的移植.改进和应用
  • 批准号:
    18870435
  • 批准年份:
    1988
  • 资助金额:
    2.0 万元
  • 项目类别:
    面上项目

相似海外基金

Onboarding Rural Area Mathematics and Physical Science Scholars
农村地区数学和物理科学学者的入职
  • 批准号:
    2322614
  • 财政年份:
    2024
  • 资助金额:
    $ 145万
  • 项目类别:
    Standard Grant
TRACK-UK: Synthesized Census and Small Area Statistics for Transport and Energy
TRACK-UK:交通和能源综合人口普查和小区域统计
  • 批准号:
    ES/Z50290X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 145万
  • 项目类别:
    Research Grant
Wide-area low-cost sustainable ocean temperature and velocity structure extraction using distributed fibre optic sensing within legacy seafloor cables
使用传统海底电缆中的分布式光纤传感进行广域低成本可持续海洋温度和速度结构提取
  • 批准号:
    NE/Y003365/1
  • 财政年份:
    2024
  • 资助金额:
    $ 145万
  • 项目类别:
    Research Grant
Point-scanning confocal with area detector
点扫描共焦与区域检测器
  • 批准号:
    534092360
  • 财政年份:
    2024
  • 资助金额:
    $ 145万
  • 项目类别:
    Major Research Instrumentation
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
  • 批准号:
    2326714
  • 财政年份:
    2024
  • 资助金额:
    $ 145万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
  • 批准号:
    2326713
  • 财政年份:
    2024
  • 资助金额:
    $ 145万
  • 项目类别:
    Standard Grant
Unlicensed Low-Power Wide Area Networks for Location-based Services
用于基于位置的服务的免许可低功耗广域网
  • 批准号:
    24K20765
  • 财政年份:
    2024
  • 资助金额:
    $ 145万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
  • 批准号:
    2427233
  • 财政年份:
    2024
  • 资助金额:
    $ 145万
  • 项目类别:
    Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
  • 批准号:
    2427232
  • 财政年份:
    2024
  • 资助金额:
    $ 145万
  • 项目类别:
    Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
  • 批准号:
    2427231
  • 财政年份:
    2024
  • 资助金额:
    $ 145万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了