Comprehensive Human Expressed Sequences in Brain (CHESS-BRAIN) and their roles in neuropsychiatric illness

大脑中综合人类表达序列(CHESS-BRAIN)及其在神经精神疾病中的作用

基本信息

  • 批准号:
    10541887
  • 负责人:
  • 金额:
    $ 61.81万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-03-02 至 2025-12-31
  • 项目状态:
    未结题

项目摘要

Project Summary The widespread use of RNA sequencing technology over the past decade has allowed scientists to discover a far larger and richer repertoire of genes and transcripts encoded by the human genome than were known just a decade ago. At least 90% of human genes have multiple isoforms, including splicing variants, alternative sites of transcription initiation and termination, exon skipping events, and more. The number of human transcripts in standard gene databases has grown enormously, from ~40,000 in the late 2000s to over 200,000 today, but it is still likely far from complete. Our previous work using exon-exon splice junctions and other fragmentary transcripts has demonstrated the clinical relevance of unannotated but expressed genes in the human brain, including associations with schizophrenia and its genetic risk. This project will attempt to discover and characterize novel gene isoforms collected from both healthy and diseased brains, using the latest computational methods for transcriptome assembly and an extensive collection of brain RNA-seq datasets. The project is organized into three aims: first, we will develop new algorithms designed to assemble RNA-seq data from samples that have been sequenced using ribosomal RNA depletion, a technique that is widely used in human brain studies but that is not used in most other RNA-seq experiments, which instead use polyA+ enrichment. We will implement these methods as extensions to the HISAT and StringTie systems for RNA-seq alignment and assembly, both of which were developed in the PI's and co-PI's labs. We will then apply these improved methods to thousands of publicly available RNA-seq samples from human brain tissue to create a new "CHESS-BRAIN" (Comprehensive Human Expressed Sequences in Brain) gene annotation database. This effort will also determine which transcripts are tissue-specific and brain-region specific; i.e., expressed at significantly higher or lower levels in brain tissues and in various brain regions as compared to other tissues. In the second aim, we will use these methods to quantify gene expression levels in hundreds of post-mortem brain RNA-seq samples from subjects diagnosed with schizophrenia (SCZD), major depression (MDD), bipolar disorder (BPD), autism spectrum disorder (ASD), and post-traumatic stress disorder (PTSD), whom we will compare to matched controls to identify the contribution of unannotated transcription in these disorders. In our third aim we will perform expression quantitative trait loci (eQTL) mapping across the entire CHESS-brain dataset, both within and across brain regions and diagnoses, to identify genetic regulation of unannotated transcripts, including both coding and noncoding transcripts. This analysis will identify genes and transcripts whose expression levels change significantly in different tissues and diseases. We will combine these results to identify novel transcripts associated with genetic risk for each of the psychiatric disorders.
项目摘要 在过去的十年里,RNA测序技术的广泛使用使科学家们能够发现一个遥远的 人类基因组编码的基因和转录物的数量比我们所知的更大、更丰富, 十年前至少90%的人类基因具有多种异构体,包括剪接变体、替代位点、 转录起始和终止,外显子跳跃事件,等等。人类转录本的数量 在标准基因数据库中的数据已经大幅增长,从21世纪末的约40,000到今天的超过200,000, 它可能仍远未完成。我们以前的工作使用外显子-外显子剪接点和其他片段 转录本已经证明了人脑中未注释但表达的基因的临床相关性, 包括与精神分裂症及其遗传风险的关联。该项目将试图发现和 表征新的基因异构体收集从健康和患病的大脑,使用最新的 用于转录组组装的计算方法和广泛收集的脑RNA-seq数据集。的 该项目分为三个目标:首先,我们将开发新的算法来组装RNA-seq数据 从已经使用核糖体RNA耗尽测序的样品中, 人类大脑研究,但不用于大多数其他RNA-seq实验,而是使用polyA+ 丰富。我们将实现这些方法作为RNA-seq的HISAT和StringTie系统的扩展 校准和组装,这两个都是在PI和co-PI的实验室开发的。我们将应用这些 改进的方法,从人脑组织中提取数千个公开可用的RNA-seq样本, 新的“CHESS-BRAIN”(脑中的人类表达序列综合)基因注释数据库。这 努力还将确定哪些转录物是组织特异性的和脑区域特异性的;即,表达 与其他组织相比,在脑组织和各种脑区域中的水平显著更高或更低。在 第二个目标,我们将使用这些方法来定量基因表达水平在数百死后的大脑 来自被诊断患有精神分裂症(SCZD)、重性抑郁症(MDD)、双相情感障碍(躁郁症)和抑郁症的受试者的RNA-seq样品 自闭症谱系障碍(ASD)和创伤后应激障碍(PTSD),我们将 与匹配的对照进行比较,以确定这些疾病中未注释的转录的贡献。在 我们的第三个目标是在整个CHESS-脑中进行表达数量性状基因座(eQTL)定位。 数据集,无论是在大脑区域和诊断,以确定未注释的基因调控 转录本,包括编码和非编码转录本。这项分析将确定基因和转录本 其表达水平在不同组织和疾病中显著变化。我们将联合收割机结合这些结果, 确定与每种精神疾病的遗传风险相关的新转录本。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Steven L. Salzberg其他文献

The 15th Genomic Standards Consortium meeting
  • DOI:
    10.4056/sigs.3457
  • 发表时间:
    2013-01-01
  • 期刊:
  • 影响因子:
    5.400
  • 作者:
    Lynn Schriml;Ilene Mizrachi;Peter Sterk;Dawn Field;Lynette Hirschman;Tatiana Tatusova;Susanna Sansone;Jack Gilbert;David Schindel;Neil Davies;Chris Meyer;Folker Meyer;George Garrity;Lita Proctor;M. H. Medema;Yemin Lan;Anna Klindworth;Frank Oliver Glöckner;Tonia Korves;Antonia Gonzalez;Peter Dwayndt;Markus Göker;Anjette Johnston;Evangelos Pafilis;Susanne Schneider;K. Baker;Cynthia Parr;G. Sutton;H. H. Creasy;Nikos Kyrpides;K. Eric Wommack;Patricia L. Whetzel;Daniel Nasko;Hilmar Lapp;Takamoto Fujisawa;Adam M. Phillippy;Renzo Kottman;Judith A. Blake;Junhua Li;Elizabeth M. Glass;Petra ten Hoopen;Rob Knight;Susan Holmes;Curtis Huttenhower;Steven L. Salzberg;Bing Ma;Owen White
  • 通讯作者:
    Owen White
C4.5: Programs for Machine Learning by J. Ross Quinlan. Morgan Kaufmann Publishers, Inc., 1993
  • DOI:
    10.1007/bf00993309
  • 发表时间:
    1994-09-01
  • 期刊:
  • 影响因子:
    2.900
  • 作者:
    Steven L. Salzberg
  • 通讯作者:
    Steven L. Salzberg
Reply to Austin and Korem, “Compositional transformations can reasonably introduce phenotype-associated values into sparse features”
回复奥斯汀和科雷姆,“组合变换可以合理地将与表型相关的值引入稀疏特征”
  • DOI:
    10.1128/msystems.00248-25
  • 发表时间:
    2025-04-30
  • 期刊:
  • 影响因子:
    4.600
  • 作者:
    Steven L. Salzberg
  • 通讯作者:
    Steven L. Salzberg
Yeast rises again
酵母再次兴起
  • DOI:
    10.1038/423233a
  • 发表时间:
    2003-05-15
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Steven L. Salzberg
  • 通讯作者:
    Steven L. Salzberg
Q UALITY ASSESSMENT OF SPLICE SITE ANNOTATION BASED ON CONSERVATION ACROSS MULTIPLE SPECIES
基于多物种保护的剪接位点注释质量评估
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ilia Minkin;Steven L. Salzberg
  • 通讯作者:
    Steven L. Salzberg

Steven L. Salzberg的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Steven L. Salzberg', 18)}}的其他基金

Comprehensive Human Expressed Sequences in Brain (CHESS-BRAIN) and their roles in neuropsychiatric illness
大脑中综合人类表达序列(CHESS-BRAIN)及其在神经精神疾病中的作用
  • 批准号:
    10362615
  • 财政年份:
    2021
  • 资助金额:
    $ 61.81万
  • 项目类别:
Comprehensive Human Expressed Sequences in Brain (CHESS-BRAIN) and their roles in neuropsychiatric illness
大脑中综合人类表达序列(CHESS-BRAIN)及其在神经精神疾病中的作用
  • 批准号:
    10205617
  • 财政年份:
    2021
  • 资助金额:
    $ 61.81万
  • 项目类别:
Computational Methods for Microbial and Microbiome Sequence Analysis
微生物和微生物组序列分析的计算方法
  • 批准号:
    10331733
  • 财政年份:
    2019
  • 资助金额:
    $ 61.81万
  • 项目类别:
Computational Methods for Microbial and Microbiome Sequence Analysis
微生物和微生物组序列分析的计算方法
  • 批准号:
    10550160
  • 财政年份:
    2019
  • 资助金额:
    $ 61.81万
  • 项目类别:
Computational Methods for Microbial and Microbiome Sequence Analysis
微生物和微生物组序列分析的计算方法
  • 批准号:
    10083744
  • 财政年份:
    2019
  • 资助金额:
    $ 61.81万
  • 项目类别:
The Terabase Search Engine
Terabase 搜索引擎
  • 批准号:
    8882493
  • 财政年份:
    2014
  • 资助金额:
    $ 61.81万
  • 项目类别:
The Terabase Search Engine
Terabase 搜索引擎
  • 批准号:
    8688406
  • 财政年份:
    2014
  • 资助金额:
    $ 61.81万
  • 项目类别:
Computational Gene Modeling and Genome Sequence Assembly
计算基因建模和基因组序列组装
  • 批准号:
    8329127
  • 财政年份:
    2011
  • 资助金额:
    $ 61.81万
  • 项目类别:
Alignment Software for Second-Generation Sequencing
用于第二代测序的比对软件
  • 批准号:
    8068060
  • 财政年份:
    2011
  • 资助金额:
    $ 61.81万
  • 项目类别:
Alignment Software for Second-Generation Sequencing
用于第二代测序的比对软件
  • 批准号:
    8464182
  • 财政年份:
    2011
  • 资助金额:
    $ 61.81万
  • 项目类别:

相似海外基金

Elucidation of the role of perivascular macrophages in stroke using animal models for disease and autopsy brains
使用疾病动物模型和尸检脑阐明血管周围巨噬细胞在中风中的作用
  • 批准号:
    23K09773
  • 财政年份:
    2023
  • 资助金额:
    $ 61.81万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Pathways to enrolling diverse Latinos in autopsy studies: Insights from a largelongitudinal study
让不同拉丁裔参加尸检研究的途径:大型纵向研究的见解
  • 批准号:
    10592154
  • 财政年份:
    2023
  • 资助金额:
    $ 61.81万
  • 项目类别:
Construction of the history of forensic medicine through medical and legal historiographical examination of autopsy reports from the founding period of medico-legal autopsy.
通过对法医学尸检创立时期尸检报告的医学和法律史学检查来构建法医学史。
  • 批准号:
    23K12072
  • 财政年份:
    2023
  • 资助金额:
    $ 61.81万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
In situ and digital spatial profiling of the active HIV reservoir in autopsy-derived tissues
尸检组织中活性 HIV 储存库的原位和数字空间分析
  • 批准号:
    10459933
  • 财政年份:
    2022
  • 资助金额:
    $ 61.81万
  • 项目类别:
Developing an innovative statistical framework to integrate multiple verbal autopsy datasets to estimate cause-specific mortality
开发创新的统计框架来整合多个口头尸检数据集,以估计特定原因的死亡率
  • 批准号:
    10710402
  • 财政年份:
    2022
  • 资助金额:
    $ 61.81万
  • 项目类别:
Tissue Core-UNMC Rapid Autopsy Program
组织核心-UNMC快速尸检项目
  • 批准号:
    10707538
  • 财政年份:
    2022
  • 资助金额:
    $ 61.81万
  • 项目类别:
Tissue Core-UNMC Rapid Autopsy Program
组织核心-UNMC快速尸检项目
  • 批准号:
    10518245
  • 财政年份:
    2022
  • 资助金额:
    $ 61.81万
  • 项目类别:
Harmonizing Multiple Data Sources And Psychological Autopsy To Characterize Suicides Among Opioid-Related Deaths
协调多个数据源和心理尸检来描述阿片类药物相关死亡中的自杀特征
  • 批准号:
    10426651
  • 财政年份:
    2022
  • 资助金额:
    $ 61.81万
  • 项目类别:
Search for new biomarkers to assess cardiotoxicity: integrated analysis in autopsy heart
寻找新的生物标志物来评估心脏毒性:尸检心脏的综合分析
  • 批准号:
    22K06956
  • 财政年份:
    2022
  • 资助金额:
    $ 61.81万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Histological examination of cardiac amyloid deposition and analysis of risk factors for sudden death: a forensic autopsy series.
心脏淀粉样蛋白沉积的组织学检查和猝死危险因素分析:法医尸检系列。
  • 批准号:
    20K18979
  • 财政年份:
    2022
  • 资助金额:
    $ 61.81万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了