Comprehensive Human Expressed Sequences in Brain (CHESS-BRAIN) and their roles in neuropsychiatric illness
大脑中综合人类表达序列(CHESS-BRAIN)及其在神经精神疾病中的作用
基本信息
- 批准号:10362615
- 负责人:
- 金额:$ 55.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-03-02 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:Algorithm DesignAutopsyBipolar DisorderBrainBrain DiseasesBrain regionCatalogsCodeCollectionComputer softwareComputing MethodologiesDataData SetDatabasesDiagnosisDiseaseEventExonsGene ExpressionGenesGeneticGenetic RiskGenetic TranscriptionGenotype-Tissue Expression ProjectHumanHuman GenomeLibrariesMajor Depressive DisorderMeasuresMental DepressionMental disordersMethodsPost-Traumatic Stress DisordersPreparationProcessProtein IsoformsProteinsQuantitative Trait LociRNARNA SplicingRegulationRibosomal RNARiskRoleSamplingSchizophreniaScientistSiteSpecificitySystemTechniquesTechnologyTissuesTranscriptTranscription Initiation SiteUntranslated RNAValidationVariantWeightWorkautism spectrum disorderbrain tissuecell typeclinically relevantdifferential expressionexon skippingexperimental studygenetic variantgenome wide association studyimprovedneuropsychiatrynovelstatisticstranscription terminationtranscriptometranscriptome sequencing
项目摘要
Project Summary
The widespread use of RNA sequencing technology over the past decade has allowed scientists to discover a far
larger and richer repertoire of genes and transcripts encoded by the human genome than were known just a
decade ago. At least 90% of human genes have multiple isoforms, including splicing variants, alternative sites
of transcription initiation and termination, exon skipping events, and more. The number of human transcripts
in standard gene databases has grown enormously, from ~40,000 in the late 2000s to over 200,000 today, but
it is still likely far from complete. Our previous work using exon-exon splice junctions and other fragmentary
transcripts has demonstrated the clinical relevance of unannotated but expressed genes in the human brain,
including associations with schizophrenia and its genetic risk. This project will attempt to discover and
characterize novel gene isoforms collected from both healthy and diseased brains, using the latest
computational methods for transcriptome assembly and an extensive collection of brain RNA-seq datasets. The
project is organized into three aims: first, we will develop new algorithms designed to assemble RNA-seq data
from samples that have been sequenced using ribosomal RNA depletion, a technique that is widely used in
human brain studies but that is not used in most other RNA-seq experiments, which instead use polyA+
enrichment. We will implement these methods as extensions to the HISAT and StringTie systems for RNA-seq
alignment and assembly, both of which were developed in the PI's and co-PI's labs. We will then apply these
improved methods to thousands of publicly available RNA-seq samples from human brain tissue to create a
new "CHESS-BRAIN" (Comprehensive Human Expressed Sequences in Brain) gene annotation database. This
effort will also determine which transcripts are tissue-specific and brain-region specific; i.e., expressed at
significantly higher or lower levels in brain tissues and in various brain regions as compared to other tissues. In
the second aim, we will use these methods to quantify gene expression levels in hundreds of post-mortem brain
RNA-seq samples from subjects diagnosed with schizophrenia (SCZD), major depression (MDD), bipolar
disorder (BPD), autism spectrum disorder (ASD), and post-traumatic stress disorder (PTSD), whom we will
compare to matched controls to identify the contribution of unannotated transcription in these disorders. In
our third aim we will perform expression quantitative trait loci (eQTL) mapping across the entire CHESS-brain
dataset, both within and across brain regions and diagnoses, to identify genetic regulation of unannotated
transcripts, including both coding and noncoding transcripts. This analysis will identify genes and transcripts
whose expression levels change significantly in different tissues and diseases. We will combine these results to
identify novel transcripts associated with genetic risk for each of the psychiatric disorders.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steven L. Salzberg其他文献
The 15th Genomic Standards Consortium meeting
- DOI:
10.4056/sigs.3457 - 发表时间:
2013-01-01 - 期刊:
- 影响因子:5.400
- 作者:
Lynn Schriml;Ilene Mizrachi;Peter Sterk;Dawn Field;Lynette Hirschman;Tatiana Tatusova;Susanna Sansone;Jack Gilbert;David Schindel;Neil Davies;Chris Meyer;Folker Meyer;George Garrity;Lita Proctor;M. H. Medema;Yemin Lan;Anna Klindworth;Frank Oliver Glöckner;Tonia Korves;Antonia Gonzalez;Peter Dwayndt;Markus Göker;Anjette Johnston;Evangelos Pafilis;Susanne Schneider;K. Baker;Cynthia Parr;G. Sutton;H. H. Creasy;Nikos Kyrpides;K. Eric Wommack;Patricia L. Whetzel;Daniel Nasko;Hilmar Lapp;Takamoto Fujisawa;Adam M. Phillippy;Renzo Kottman;Judith A. Blake;Junhua Li;Elizabeth M. Glass;Petra ten Hoopen;Rob Knight;Susan Holmes;Curtis Huttenhower;Steven L. Salzberg;Bing Ma;Owen White - 通讯作者:
Owen White
C4.5: Programs for Machine Learning by J. Ross Quinlan. Morgan Kaufmann Publishers, Inc., 1993
- DOI:
10.1007/bf00993309 - 发表时间:
1994-09-01 - 期刊:
- 影响因子:2.900
- 作者:
Steven L. Salzberg - 通讯作者:
Steven L. Salzberg
Reply to Austin and Korem, “Compositional transformations can reasonably introduce phenotype-associated values into sparse features”
回复奥斯汀和科雷姆,“组合变换可以合理地将与表型相关的值引入稀疏特征”
- DOI:
10.1128/msystems.00248-25 - 发表时间:
2025-04-30 - 期刊:
- 影响因子:4.600
- 作者:
Steven L. Salzberg - 通讯作者:
Steven L. Salzberg
Yeast rises again
酵母再次兴起
- DOI:
10.1038/423233a - 发表时间:
2003-05-15 - 期刊:
- 影响因子:48.500
- 作者:
Steven L. Salzberg - 通讯作者:
Steven L. Salzberg
Q UALITY ASSESSMENT OF SPLICE SITE ANNOTATION BASED ON CONSERVATION ACROSS MULTIPLE SPECIES
基于多物种保护的剪接位点注释质量评估
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Ilia Minkin;Steven L. Salzberg - 通讯作者:
Steven L. Salzberg
Steven L. Salzberg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steven L. Salzberg', 18)}}的其他基金
Comprehensive Human Expressed Sequences in Brain (CHESS-BRAIN) and their roles in neuropsychiatric illness
大脑中综合人类表达序列(CHESS-BRAIN)及其在神经精神疾病中的作用
- 批准号:
10541887 - 财政年份:2021
- 资助金额:
$ 55.87万 - 项目类别:
Comprehensive Human Expressed Sequences in Brain (CHESS-BRAIN) and their roles in neuropsychiatric illness
大脑中综合人类表达序列(CHESS-BRAIN)及其在神经精神疾病中的作用
- 批准号:
10205617 - 财政年份:2021
- 资助金额:
$ 55.87万 - 项目类别:
Computational Methods for Microbial and Microbiome Sequence Analysis
微生物和微生物组序列分析的计算方法
- 批准号:
10331733 - 财政年份:2019
- 资助金额:
$ 55.87万 - 项目类别:
Computational Methods for Microbial and Microbiome Sequence Analysis
微生物和微生物组序列分析的计算方法
- 批准号:
10550160 - 财政年份:2019
- 资助金额:
$ 55.87万 - 项目类别:
Computational Methods for Microbial and Microbiome Sequence Analysis
微生物和微生物组序列分析的计算方法
- 批准号:
10083744 - 财政年份:2019
- 资助金额:
$ 55.87万 - 项目类别:
Computational Gene Modeling and Genome Sequence Assembly
计算基因建模和基因组序列组装
- 批准号:
8329127 - 财政年份:2011
- 资助金额:
$ 55.87万 - 项目类别:
Alignment Software for Second-Generation Sequencing
用于第二代测序的比对软件
- 批准号:
8068060 - 财政年份:2011
- 资助金额:
$ 55.87万 - 项目类别:
Alignment Software for Second-Generation Sequencing
用于第二代测序的比对软件
- 批准号:
8464182 - 财政年份:2011
- 资助金额:
$ 55.87万 - 项目类别:
相似海外基金
Elucidation of the role of perivascular macrophages in stroke using animal models for disease and autopsy brains
使用疾病动物模型和尸检脑阐明血管周围巨噬细胞在中风中的作用
- 批准号:
23K09773 - 财政年份:2023
- 资助金额:
$ 55.87万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Pathways to enrolling diverse Latinos in autopsy studies: Insights from a largelongitudinal study
让不同拉丁裔参加尸检研究的途径:大型纵向研究的见解
- 批准号:
10592154 - 财政年份:2023
- 资助金额:
$ 55.87万 - 项目类别:
Construction of the history of forensic medicine through medical and legal historiographical examination of autopsy reports from the founding period of medico-legal autopsy.
通过对法医学尸检创立时期尸检报告的医学和法律史学检查来构建法医学史。
- 批准号:
23K12072 - 财政年份:2023
- 资助金额:
$ 55.87万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
In situ and digital spatial profiling of the active HIV reservoir in autopsy-derived tissues
尸检组织中活性 HIV 储存库的原位和数字空间分析
- 批准号:
10459933 - 财政年份:2022
- 资助金额:
$ 55.87万 - 项目类别:
Developing an innovative statistical framework to integrate multiple verbal autopsy datasets to estimate cause-specific mortality
开发创新的统计框架来整合多个口头尸检数据集,以估计特定原因的死亡率
- 批准号:
10710402 - 财政年份:2022
- 资助金额:
$ 55.87万 - 项目类别:
Harmonizing Multiple Data Sources And Psychological Autopsy To Characterize Suicides Among Opioid-Related Deaths
协调多个数据源和心理尸检来描述阿片类药物相关死亡中的自杀特征
- 批准号:
10426651 - 财政年份:2022
- 资助金额:
$ 55.87万 - 项目类别:
Search for new biomarkers to assess cardiotoxicity: integrated analysis in autopsy heart
寻找新的生物标志物来评估心脏毒性:尸检心脏的综合分析
- 批准号:
22K06956 - 财政年份:2022
- 资助金额:
$ 55.87万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Histological examination of cardiac amyloid deposition and analysis of risk factors for sudden death: a forensic autopsy series.
心脏淀粉样蛋白沉积的组织学检查和猝死危险因素分析:法医尸检系列。
- 批准号:
20K18979 - 财政年份:2022
- 资助金额:
$ 55.87万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




