Dirac operators in representation theory
表示论中的狄拉克算子
基本信息
- 批准号:EP/N033922/1
- 负责人:
- 金额:$ 55.1万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2016
- 资助国家:英国
- 起止时间:2016 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The mathematical structure that describes the symmetries that appear in nature is a simple algebraic object called a group. For example, one can consider the symmetries of a circle in the plane, i.e., length-preserving transformations of the plane that map the circle to itself. Rotations by any angle preserve the circle. But this set of symmetries has some intrinsic additional structure, e.g., performing one rotation followed by another gives another rotation in the same set and every rotation has an inverse rotation. This set, together with the additional structure, is called the special orthogonal group in the plane, and it is an example of a Lie group. Lie groups, named after the Norwegian mathematician Sophus Lie, are mathematical objects underlying the continuous symmetries inherent in a system. This proposals falls in the area of representations of Lie groups. Representations are ways in which Lie groups can manifest themselves, e.g., rather than regarding the special orthogonal group as an abstract object, one can think of its `representation' as transformations of the plane given by rotations. The study of representations of Lie groups has a long and illustrious history and has had transformative impact in number theory and theoretical physics. The main idea of the present project is to import and generalize a beautiful mathematical construction, called the Dirac operator. The Dirac operator originated in physics by the famous work of Paul Dirac in quantum mechanics, and subsequently, found a home in mathematics (geometry) by the seminal work of Atiyah and Singer, and in the representation theory of Lie groups in the work of Parthasarathy, Atiyah-Schmid, Kostant, and many others. The new algebraic approach to the theory was initiated by Vogan about 15 years ago with the introduction of Dirac cohomology and this has opened new and exciting perspectives of research in mathematics. The current project will extend the Dirac theory to an algebraic setting and apply the techniques of the Dirac operator and Dirac cohomology to the world of representations of p-adic Lie groups and of related algebraic structures (Hecke algebras) with applications to modern number theory and areas of mathematical physics.
描述自然界中出现的对称性的数学结构是一个简单的代数对象,称为群。例如,可以考虑平面中圆的对称性,即,将圆映射到其自身的平面的长度保持变换。任何角度的旋转都保持圆不变。但是这组对称性具有某种内在的附加结构,例如,执行一个旋转之后执行另一个旋转给出了同一组中的另一个旋转,并且每个旋转具有反向旋转。这个集合与附加结构一起被称为平面上的特殊正交群,它是李群的一个例子。李群,以挪威数学家Sophus Lie的名字命名,是系统中固有的连续对称性的数学对象。这个建议福尔斯落在李群的表示领域。表示是李群可以表现自己的方式,例如,人们可以把特殊正交群看作是平面的旋转变换,而不是把它看作是一个抽象的对象。李群表示的研究有着悠久而辉煌的历史,并在数论和理论物理学中产生了变革性的影响。本项目的主要思想是导入和推广一个美丽的数学结构,称为狄拉克算子。狄拉克算子起源于物理学中的保罗·狄拉克在量子力学中的著名工作,随后,通过阿蒂亚和辛格的开创性工作在数学(几何)中找到了家,并在李群的表示论中找到了帕塔萨拉西,阿蒂亚-施密德,科斯坦特和许多其他人的工作。新的代数方法的理论是由沃根约15年前推出的狄拉克上同调,这开辟了新的和令人兴奋的角度研究数学。目前的项目将扩展狄拉克理论的代数设置和应用的狄拉克算子和狄拉克上同调的技术的p-adic李群和相关的代数结构(Hecke代数)的表示的世界与应用到现代数论和数学物理领域。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Dunkl-Cherednik deformation of a Howe duality
- DOI:10.1016/j.jalgebra.2020.05.034
- 发表时间:2018-12
- 期刊:
- 影响因子:0.9
- 作者:D. Ciubotaru;Marcelo De Martino
- 通讯作者:D. Ciubotaru;Marcelo De Martino
On the reducibility of induced representations for classical p-adic groups and related affine Hecke algebras
关于经典 p-adic 群和相关仿射 Hecke 代数的诱导表示的可约性
- DOI:10.1007/s11856-019-1857-7
- 发表时间:2019
- 期刊:
- 影响因子:1
- 作者:Ciubotaru D
- 通讯作者:Ciubotaru D
Cocenters of p-adic Groups, III: Elliptic and Rigid Cocenters
p 进群的中心,III:椭圆和刚性中心
- DOI:10.1007/s42543-020-00027-1
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Ciubotaru D
- 通讯作者:Ciubotaru D
SYMPLECTIC DIRAC OPERATORS FOR LIE ALGEBRAS AND GRADED HECKE ALGEBRAS
李代数和分级赫克代数的辛狄拉克算子
- DOI:10.1007/s00031-022-09762-4
- 发表时间:2022
- 期刊:
- 影响因子:0.7
- 作者:CIUBOTARU D
- 通讯作者:CIUBOTARU D
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dan Ciubotaru其他文献
Regular orbits of symmetric subgroup on partial flag varieties
偏旗簇上对称子群的正则轨道
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Dan Ciubotaru;Kyo Nishiyama;Peter Trapa - 通讯作者:
Peter Trapa
Pathological examples on non-noetherian rings
非诺特环的病理例子
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Dan Ciubotaru;Midori Kato;and Syu Kato;Satoshi Takagi;加藤周;加藤周;Satoshi Takagi;加藤周;高木聡;加藤周;高木聡 - 通讯作者:
高木聡
Variants of the scheme theory
计划理论的变种
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Dan Ciubotaru;Midori Kato;and Syu Kato;Satoshi Takagi;加藤周;加藤周;Satoshi Takagi;加藤周;高木聡;加藤周;高木聡;加藤周;Satoshi Takagi;加藤周;Satoshi Takagi;加藤周;Satoshi Takagi;加藤周;Satoshi Takagi - 通讯作者:
Satoshi Takagi
Purely algebraic construction of the Arakelov compactification
Arakelov 紧化的纯代数构造
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Dan Ciubotaru;Midori Kato;and Syu Kato;Satoshi Takagi;加藤周;加藤周;Satoshi Takagi;加藤周;高木聡;加藤周;高木聡;加藤周;Satoshi Takagi;加藤周;Satoshi Takagi;加藤周;Satoshi Takagi;加藤周;Satoshi Takagi;加藤周;Satoshi Takagi - 通讯作者:
Satoshi Takagi
Dan Ciubotaru的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dan Ciubotaru', 18)}}的其他基金
Unitary representations of reductive p-adic groups: an algorithm
还原 p 进群的酉表示:一种算法
- 批准号:
EP/V046713/1 - 财政年份:2021
- 资助金额:
$ 55.1万 - 项目类别:
Research Grant
FRG: Collaborative Research: Atlas of Lie Groups and Representations: Unitary Representations
FRG:协作研究:李群和表示图集:酉表示
- 批准号:
0968065 - 财政年份:2010
- 资助金额:
$ 55.1万 - 项目类别:
Standard Grant
相似海外基金
Symmetry breaking operators
对称破缺算子
- 批准号:
17J02884 - 财政年份:2017
- 资助金额:
$ 55.1万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Positive Representations
积极的表现
- 批准号:
26800004 - 财政年份:2014
- 资助金额:
$ 55.1万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Representations of solvable Lie groups and differential operators
可解李群和微分算子的表示
- 批准号:
14540194 - 财政年份:2002
- 资助金额:
$ 55.1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Facial structure of convex sets and integrand representation of convex operators
凸集的面结构与凸算子的被积函数表示
- 批准号:
11640147 - 财政年份:1999
- 资助金额:
$ 55.1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
"Research on prehomogeneous vector spaces and micro-local analysis"
《预齐次向量空间与微局部分析研究》
- 批准号:
11640161 - 财政年份:1999
- 资助金额:
$ 55.1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
U.S.-Australia Cooperative Research: Invariant Elliptic and Subelliptic Operators, and their role in Geometry and Representation Theory
美澳合作研究:不变椭圆和次椭圆算子及其在几何和表示理论中的作用
- 批准号:
9724781 - 财政年份:1998
- 资助金额:
$ 55.1万 - 项目类别:
Standard Grant
Study of Representation theory and Combinatorics and their related topics
表示论和组合学及其相关主题的研究
- 批准号:
09640059 - 财政年份:1997
- 资助金额:
$ 55.1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Completely integrable systema and representation theory of infinite dimen-sional algebras
无限维代数的完全可积系统和表示论
- 批准号:
09440014 - 财政年份:1997
- 资助金额:
$ 55.1万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Differential operators of gradient type on symmetric spaces and representations of Lie algebras
对称空间上梯度型微分算子及李代数的表示
- 批准号:
09440002 - 财政年份:1997
- 资助金额:
$ 55.1万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Representation Theories of Superconformal Algebras and Superstring
超共形代数和超弦的表示论
- 批准号:
02640227 - 财政年份:1990
- 资助金额:
$ 55.1万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)