Instilling Defect-Tolerance in ABZ2 Photovoltaic Materials

向 ABZ2 光伏材料灌输缺陷容限

基本信息

  • 批准号:
    EP/V014498/2
  • 负责人:
  • 金额:
    $ 38.78万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

This project aims to develop a new class of semiconductors for photovoltaics (PVs) that can tolerate defects to achieve high efficiencies when manufactured by low capital-intensity and scalable methods. PVs produce clean electricity from sunlight, and their deployment in the UK needs to accelerated by over an order of magnitude so that we can meet our legislated net-zero CO2 emissions target by 2050. New thin film PV materials are urgently needed. Thin film PVs can be used in tandem device structures, in which they are deposited on top of silicon PVs (which dominate the market) or smaller-bandgap thin film PVs. These tandem devices convert a larger fraction of the solar spectrum into electrical energy and can achieve efficiencies surpassing the best single-junction devices, which will be vital for accelerating utility-scale PV deployment. Thin film PVs can also be used as energy-harvesting roof-tiles, windows or cladding to enable sustainable carbon-neutral buildings. But across all applications, it is essential that the materials are efficient when made with by low cost manufacturing methods. The limiting factor is the deleterious role of point defects, such as vacancies. In traditional semiconductors, these point defects introduce energy levels deep within the bandgap and cause irreversible losses in energy. Minimising the density of these defects often requires expensive manufacturing routes. Defect-tolerant semiconductors circumvent these limitations by forming defect levels close to the band-edges (i.e., shallow), where they are less harmful. Such materials were rare until the recent serendipitous discovery of the lead-halide perovskites. Grown cheaply by solution-processing, these polycrystalline materials have over a million times more defects than silicon but are already more efficient in PVs than multi-crystalline silicon. A critical question is whether defect-tolerance can be found in other classes of materials that are free from the toxicity burden of the halide perovskites. This work aims to develop a set of design rules to pinpoint lead-free defect-tolerant semiconductors, and systematically develop these materials into efficient, stable PVs that can be deployed on the terawatt scale. The materials focussed on are ABZ2 compounds, where A is a monovalent cation, B a divalent cation and Z a divalent anion. These materials already show promising signs hinting at defect-tolerance. My approach draws off my experimental strengths in the control of complex thin films. I hypothesise that materials forming shallow traps can be identified through their crystal structure, band-edge orbital composition and degree of cation-anion orbital overlap. I will experimentally elucidate the role of each property by tuning the composition of a small set of ABZ2 materials to vary one property at a time. Defect tolerance will be measured by intentionally inducing vacancies and measuring their effect on charge-carrier lifetime and electronic structure. These design rules will be applied to identify the most promising ABZ2 materials, which will be grown by scalable solution- and vapour-based methods. I will optimise their growth using a fast experimental feedback loop to achieve materials with promising bulk properties for solar absorbers. Such materials will be developed into PVs, drawing off my skills and experience in device engineering. This work is extremely timely and will lead the emerging area of defect-tolerant semiconductors away from toxic perovskites. The new materials can ultimately become commercial contenders for tandem or building-integrated PVs, and therefore impact on the £120B PV industry. These new materials can also have much broader impact and be used, for example, as cheap but efficient materials for clean solar fuel production or biosensors. This project sets the key foundations for achieving these exciting possibilities and will enable me to set-up my group with a cutting-edge programme.
该项目旨在开发一种新型的用于光伏(PV)的半导体,这种半导体可以容忍缺陷,从而在以低资本密集型和可扩展的方法制造时实现高效率。PVS利用阳光产生清洁电力,它们在英国的部署需要加快一个数量级以上,这样我们才能在2050年实现立法规定的二氧化碳净零排放目标。迫切需要新的薄膜光伏材料。薄膜PV可用于串联器件结构,在这种结构中,它们被沉积在主导市场的硅PV或较小带隙的薄膜PV的顶部。这些串联设备将更大比例的太阳能光谱转换为电能,可以实现超过最好的单结设备的效率,这对于加快公用事业规模的光伏部署至关重要。薄膜PVs还可以用作收集能量的屋顶瓦片、窗户或覆层,以实现可持续的碳中性建筑。但在所有应用中,使用低成本制造方法制造材料时,高效是至关重要的。限制因素是点缺陷的有害作用,如空位。在传统半导体中,这些点缺陷在带隙深处引入能级,造成不可逆转的能量损失。要将这些缺陷的密度降至最低,通常需要昂贵的制造工艺。缺陷容限半导体通过在接近带边(即,浅)的地方形成缺陷能级,从而绕过这些限制,在那里它们的危害性较小。在最近偶然发现卤化铅钙钛矿之前,这种材料一直很少见。这些多晶材料通过溶液处理以低成本生长,其缺陷比硅多100万倍,但在PV中已经比多晶硅更有效。一个关键的问题是,是否可以在其他类别的材料中找到缺陷容忍度,这些材料没有卤化物钙钛矿的毒性负担。这项工作旨在开发一套精确定位无铅耐缺陷半导体的设计规则,并系统地将这些材料开发成可部署在太瓦级的高效、稳定的PV。所研究的材料为ABZ2化合物,其中A为一价阳离子,B为二价阳离子,Z为二价阴离子。这些材料已经显示出有希望的迹象,暗示了缺陷容忍度。我的方法利用了我在控制复杂薄膜方面的实验优势。我假设,形成浅陷阱的物质可以通过它们的晶体结构、带边轨道组成和阳离子-阴离子轨道重叠程度来识别。我将通过调整一小组ABZ2材料的组成来实验地阐明每种属性的作用,以一次改变一种属性。缺陷容忍度将通过故意诱导空位并测量它们对电荷载流子寿命和电子结构的影响来衡量。这些设计规则将被应用于确定最有希望的ABZ2材料,这些材料将通过可扩展的溶液和蒸气方法生长。我将使用快速的实验反馈循环来优化它们的生长,以获得具有良好的太阳能吸收器整体性能的材料。这种材料将被开发成PV,吸取我在设备工程方面的技能和经验。这项工作非常及时,将使容错半导体这一新兴领域远离有毒的钙钛矿。这些新材料最终可能成为串联式或建筑集成式PV的商业竞争者,从而对GB 120B光伏行业产生影响。这些新材料还可以产生更广泛的影响,并被用作廉价但高效的材料,用于清洁太阳能燃料生产或生物传感器。这个项目为实现这些令人兴奋的可能性奠定了关键基础,并将使我能够用一个尖端项目来建立我的团队。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Air-stable bismuth sulfobromide (BiSBr) visible-light absorbers: optoelectronic properties and potential for energy harvesting
空气稳定的磺溴化铋 (BiSBr) 可见光吸收剂:光电特性和能量收集潜力
Bandlike Transport and Charge-Carrier Dynamics in BiOI Films.
  • DOI:
    10.1021/acs.jpclett.3c01520
  • 发表时间:
    2023-07-27
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    Lal, Snigdha;Righetto, Marcello;Ulatowski, Aleksander M.;Motti, Silvia G.;Sun, Zhuotong;MacManus-Driscoll, Judith L.;Hoye, Robert L. Z.;Herz, Laura M.
  • 通讯作者:
    Herz, Laura M.
Grain Engineering of Sb 2 S 3 Thin Films to Enable Efficient Planar Solar Cells with High Open-Circuit Voltage
Sb 2 S 3 薄膜的晶粒工程可实现具有高开路电压的高效平面太阳能电池
  • DOI:
    10.1002/adma.202305841
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    29.4
  • 作者:
    Liu X
  • 通讯作者:
    Liu X
Layered BiOI single crystals capable of detecting low dose rates of X-rays.
  • DOI:
    10.1038/s41467-023-38008-4
  • 发表时间:
    2023-04-28
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Jagt, Robert A.;Bravic, Ivona;Eyre, Lissa;Galkowski, Krzysztof;Borowiec, Joanna;Dudipala, Kavya Reddy;Baranowski, Michal;Dyksik, Mateusz;Van de Goor, Tim W. J.;Kreouzis, Theo;Xiao, Ming;Bevan, Adrian;Plochocka, Paulina;Stranks, Samuel D.;Deschler, Felix;Monserrat, Bartomeu;MacManus-Driscoll, Judith L.;Hoye, Robert L. Z.
  • 通讯作者:
    Hoye, Robert L. Z.
Resolving Electron and Hole Transport Properties in Semiconductor Materials by Constant Light Induced Magneto Transport
通过恒定光诱导磁传输解析半导体材料中的电子和空穴传输特性
  • DOI:
    10.21203/rs.3.rs-3200897/v1
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Musiienko A
  • 通讯作者:
    Musiienko A
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robert L. Z. Hoye其他文献

Structural and electronic features enabling delocalized charge-carriers in CuSbSe2
在 CuSbSe2 中实现离域电荷载流子的结构和电子特征
  • DOI:
    10.1038/s41467-024-55254-2
  • 发表时间:
    2025-01-02
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Yuchen Fu;Hugh Lohan;Marcello Righetto;Yi-Teng Huang;Seán R. Kavanagh;Chang-Woo Cho;Szymon J. Zelewski;Young Won Woo;Harry Demetriou;Martyn A. McLachlan;Sandrine Heutz;Benjamin A. Piot;David O. Scanlon;Akshay Rao;Laura M. Herz;Aron Walsh;Robert L. Z. Hoye
  • 通讯作者:
    Robert L. Z. Hoye
Data-driven microstructural optimization of Ag-Bi-I perovskite-inspired materials
基于数据驱动的受银铋碘钙钛矿启发材料的微观结构优化
  • DOI:
    10.1038/s41524-025-01701-7
  • 发表时间:
    2025-07-03
  • 期刊:
  • 影响因子:
    11.900
  • 作者:
    Kshithij Mysore Nandishwara;Shuan Cheng;Pengjun Liu;Huimin Zhu;Xiaoyu Guo;Fabien C.-P. Massabuau;Robert L. Z. Hoye;Shijing Sun
  • 通讯作者:
    Shijing Sun
Multifaceted nature of defect tolerance in halide perovskites and emerging semiconductors
卤化物钙钛矿和新兴半导体中容错性的多面性质
  • DOI:
    10.1038/s41570-025-00702-w
  • 发表时间:
    2025-04-07
  • 期刊:
  • 影响因子:
    51.700
  • 作者:
    Irea Mosquera-Lois;Yi-Teng Huang;Hugh Lohan;Junzhi Ye;Aron Walsh;Robert L. Z. Hoye
  • 通讯作者:
    Robert L. Z. Hoye
Interfacial defect healing of In2S3/Sb2(S,Se)3 heterojunction solar cells with a novel wide-bandgap InOCl passivator
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    11.9
  • 作者:
    Changxue Wang;Dongdong Li;Xiaoli Mao;Lei Wan;Zhen Cheng;Jun Zhu;Robert L. Z. Hoye;Ru Zhou
  • 通讯作者:
    Ru Zhou

Robert L. Z. Hoye的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robert L. Z. Hoye', 18)}}的其他基金

ECCS-EPSRC: A new generation of cost-effective, scalable and stable radiation detectors with ultrahigh detectivity
ECCS-EPSRC:具有超高探测率的新一代经济高效、可扩展且稳定的辐射探测器
  • 批准号:
    EP/Y032942/1
  • 财政年份:
    2024
  • 资助金额:
    $ 38.78万
  • 项目类别:
    Research Grant
Pnictogen-based semiconductors for Harvesting EneRgy from Ambient Light to power autonomous Devices (HERALD)
用于从环境光中收集能量为自主设备供电的基于 Pnictogen 的半导体 (HERALD)
  • 批准号:
    EP/X022900/1
  • 财政年份:
    2022
  • 资助金额:
    $ 38.78万
  • 项目类别:
    Research Grant
Instilling Defect-Tolerance in ABZ2 Photovoltaic Materials
向 ABZ2 光伏材料灌输缺陷容限
  • 批准号:
    EP/V014498/1
  • 财政年份:
    2021
  • 资助金额:
    $ 38.78万
  • 项目类别:
    Research Grant

相似海外基金

Instilling Defect-Tolerance in ABZ2 Photovoltaic Materials
向 ABZ2 光伏材料灌输缺陷容限
  • 批准号:
    EP/V014498/1
  • 财政年份:
    2021
  • 资助金额:
    $ 38.78万
  • 项目类别:
    Research Grant
Microstructure- and defect-controlled damage tolerance evaluation of lattice structures at room temperature and 650 °C based on the E-PBF processed Ni-based alloy Inconel 718
基于 E-PBF 处理的镍基合金 Inconel 718 进行室温和 650 °C 晶格结构的微观结构和缺陷控制损伤容限评估
  • 批准号:
    379213719
  • 财政年份:
    2017
  • 资助金额:
    $ 38.78万
  • 项目类别:
    Research Grants
Defect Tolerance in Microfluidic Systems
微流体系统中的缺陷容限
  • 批准号:
    447106-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 38.78万
  • 项目类别:
    University Undergraduate Student Research Awards
Research on molecular mechanisms of break in immunological tolerance in disorders caused by single-gene defect
单基因缺陷所致疾病免疫耐受破坏的分子机制研究
  • 批准号:
    23390270
  • 财政年份:
    2011
  • 资助金额:
    $ 38.78万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CAREER: Adaptive and Built-in Defect and Fault Tolerance for Crossbar Nano-architectures
职业:Crossbar 纳米架构的自适应内置缺陷和容错能力
  • 批准号:
    0746836
  • 财政年份:
    2008
  • 资助金额:
    $ 38.78万
  • 项目类别:
    Continuing Grant
Asynchronous Nanowire Reconfigurable Crossbar Architecture for Manufacturability, Scalability, Robustness and Defect & Fault-Tolerance
异步纳米线可重构交叉架构,可实现可制造性、可扩展性、鲁棒性和缺陷
  • 批准号:
    0801362
  • 财政年份:
    2008
  • 资助金额:
    $ 38.78万
  • 项目类别:
    Standard Grant
Reconfiguration and Defect Tolerance in Quantum-dot Cellular Automata Based Nano-Devices
基于量子点元胞自动机的纳米器件的重构和缺陷容限
  • 批准号:
    0702705
  • 财政年份:
    2007
  • 资助金额:
    $ 38.78万
  • 项目类别:
    Standard Grant
COLLABORATIVE RESEARCH: Modeling, Simulation, Circuit Design, Logic Synthesis, Testing and Defect Tolerance of Resonant Tunneling Device Based Nanotechnology
合作研究:基于纳米技术的谐振隧道器件的建模、仿真、电路设计、逻辑综合、测试和缺陷容限
  • 批准号:
    0429745
  • 财政年份:
    2004
  • 资助金额:
    $ 38.78万
  • 项目类别:
    Continuing Grant
COLLABORATIVE RESEARCH: Modeling, Simulation, Circuit Design, Logic Synthesis, Testing and Defect Tolerance of Resonant Tunneling Device Based Nanotechnology
合作研究:基于纳米技术的谐振隧道器件的建模、仿真、电路设计、逻辑综合、测试和缺陷容限
  • 批准号:
    0429265
  • 财政年份:
    2004
  • 资助金额:
    $ 38.78万
  • 项目类别:
    Continuing Grant
ITR: Nanoarchitecture: Balancing Regularity, Complexity, and Defect Tolerance using DNA for Nanoelectronic Integration
ITR:纳米架构:使用 DNA 平衡规则性、复杂性和缺陷容限以实现纳米电子集成
  • 批准号:
    0326157
  • 财政年份:
    2003
  • 资助金额:
    $ 38.78万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了