Route to high-precision positioning of single ion-implanted impurities in silicon

硅中单离子注入杂质的高精度定位之路

基本信息

  • 批准号:
    EP/X018989/1
  • 负责人:
  • 金额:
    $ 23.8万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

The only quantum technology (QT) fabrication technology that can readily leverage microelectronic fabrication processes with the existing ability of large scale-up, enabling big enough qubit arrays for error correction, or that can potentially repeatably manufacture large numbers of identical devices, is the incorporation of single impurity qubits through implantation. However, unless fully deterministic implantation of single ions (ISI) is developed, the advantages of impurity-based QT for scale-up will not be realized. Quantum computing based on ion traps, superconducting circuits and semiconductor quantum dots using a small number of qubits are well advanced, but very large-scale reproduction constitutes a major challenge for each. Small numbers of impurity qubits in silicon can also be made with high quality using hydrogen lithography, which is based on scanning probe techniques, that have enabled atomic-scale precision leading to such ground-breaking achievements as the single-atom transistor (However, it is slow and does not provide an easily scalable route to the millions of qubits needed for manufacturable quantum computers. Implantation in silicon of single impurity qubit atoms offers a solution, but most of the research in this area centres on samples with stochastic incorporation of impurities with some limited control over the placement through masks or with focussed beams. The challenge here is therefore the opposite compared with ion traps etc - large scale repetition is easy, but the positioning (and consequent error rate) of each qubit is poorer and must be improved. The placement precision is limited by the focusing of the implanted ion and the movement of the ion after it enters the target material, known as the impact straggle. Implantation also causes undesirable damage to the crystal host, as the energetic ion ricochets through channels in the crystal. This is the challenge we seek to address, using a speculative idea that will not only repair this impact damage cloud but also, and most importantly, allow much higher precision positioning of the implanted impurity. We propose a solution based on lateral solid phase epitaxial regrowth (L-SPER). Simply put, the target area is pre-amorphised (implanting silicon ions into silicon breaks bonds but does not introduce impurities and can even improve isotopic purity) by a focussed ion beam or through broad area lithography and ion implantation. Following implantation of a single ion, a low-temperature anneal restores the crystal through epitaxial regrowth, which is seeded by the surrounding crystalline material. Full pre-amorphisation is well known to result in higher crystallinity following annealing, compared to the partial amorphisation caused solely by the implantation process. The nature of this proposal is to consider what effect L-SPER has on an individual implanted atom. There is every reason to expect that, as the amorphised region shrinks during regrowth, the impurity atom is slowly pushed to the centre as the crystal reforms. If we can demonstrate this, then the precision of the final placement of the atom may be affected more strongly by the central positioning of the pre-amorphised regions rather than limited by the focusing uncertainty and straggle of the implanted ion, where the former can be of the order of a nanometer giving an order of magnitude improvement in the final positioning.
唯一的量子技术(Qt)制造技术,可以容易地利用微电子制造工艺和现有的大规模放大能力,使足够大的量子比特阵列进行纠错,或者可以潜在地重复制造大量相同的设备,是通过注入加入单个杂质量子比特。然而,除非发展出完全确定的单离子注入(ISI),否则基于杂质的QT用于放大的优势将不会实现。基于离子陷阱、超导电路和使用少量量子比特的半导体量子点的量子计算非常先进,但超大规模复制对每一个都构成了重大挑战。硅中的少量杂质量子比特也可以利用基于扫描探针技术的氢光刻技术高质量地制造出来,这使得原子规模的精度成为可能,导致了单原子晶体管等突破性成就(然而,它速度很慢,而且不能提供一条容易扩展的途径,获得可制造的量子计算机所需的数百万个量子比特)。在硅中注入单杂质量子位原子提供了一种解决方案,但这一领域的大多数研究集中在随机掺入杂质的样品上,通过掩模或聚焦光束对放置进行一些有限的控制。因此,与离子陷阱等相比,这里的挑战是相反的-大规模重复很容易,但每个量子比特的定位(和随之而来的错误率)更差,必须改进。放置精度受到注入离子的聚焦和离子进入目标材料后的运动的限制,即所谓的冲击抖动。离子注入还会对晶体宿主造成不必要的损害,因为高能离子在晶体中的通道中反弹。这就是我们寻求解决的挑战,使用一种投机性的想法,不仅将修复这种影响损害云,而且最重要的是,允许对注入的杂质进行更高精度的定位。我们提出了一种基于横向固相外延再生长的解决方案(L-SPER)。简单地说,目标区域是通过聚焦离子束或通过大面积光刻和离子注入来预非晶化(将硅离子注入硅中,但不会引入杂质,甚至可以提高同位素纯度)。在注入单个离子后,低温退火会通过外延再生长恢复晶体,外延再生长是由周围的晶体材料播种的。众所周知,与仅由注入过程引起的部分非晶化相比,完全预非晶化在退火后会产生更高的结晶度。这个提议的本质是考虑L SPER对单个被植入的原子有什么影响。有充分的理由预计,随着非晶区在再生长过程中收缩,随着晶体的重新生长,杂质原子会慢慢地被推到中心。如果我们能证明这一点,那么原子最终放置的精度可能会受到预非晶化区域中心位置的影响更大,而不是受到注入离子的聚焦不确定和抖动的限制,前者可以是纳米量级的,从而使最终定位提高一个数量级。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Detection Sensitivity Limit of Hundreds of Atoms with X-Ray Fluorescence Microscopy
X 射线荧光显微镜对数百个原子的检测灵敏度极限
  • DOI:
    10.48550/arxiv.2310.03409
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Masteghin M
  • 通讯作者:
    Masteghin M
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Steven Clowes其他文献

Steven Clowes的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Steven Clowes', 18)}}的其他基金

RAISIN - QT Network for Single-ion Implantation Technologies and Science
RAISIN - 单离子植入技术和科学的 QT 网络
  • 批准号:
    EP/W027070/1
  • 财政年份:
    2022
  • 资助金额:
    $ 23.8万
  • 项目类别:
    Research Grant
NON-MAGNETIC SEMICONDUCTOR SPINTRONICS: INNOVATIONS IN NANOSCALE, HIGHLY SPIN-ORBIT COUPLED QUANTUM WELL SYSTEMS
非磁性半导体自旋电子学:纳米级、高度自旋轨道耦合量子阱系统的创新
  • 批准号:
    EP/E055583/1
  • 财政年份:
    2007
  • 资助金额:
    $ 23.8万
  • 项目类别:
    Fellowship

相似国自然基金

High-precision force-reflected bilateral teleoperation of multi-DOF hydraulic robotic manipulators
  • 批准号:
    52111530069
  • 批准年份:
    2021
  • 资助金额:
    10 万元
  • 项目类别:
    国际(地区)合作与交流项目

相似海外基金

Towards equitable early identification of autism spectrum disorders in females
实现女性自闭症谱系障碍的公平早期识别
  • 批准号:
    10722011
  • 财政年份:
    2023
  • 资助金额:
    $ 23.8万
  • 项目类别:
United for Health Equity - Living PDX Program (U4HELPP)
United for Health Equity - Living PDX 计划 (U4HELPP)
  • 批准号:
    10733310
  • 财政年份:
    2023
  • 资助金额:
    $ 23.8万
  • 项目类别:
Optimizing Telehealth-delivery of a Weight Loss Intervention in Older Adults with Multiple Chronic Conditions: A Sequential, Multiple Assignment, Randomized Trial
优化对患有多种慢性病的老年人进行远程医疗的减肥干预:一项序贯、多项分配、随机试验
  • 批准号:
    10583917
  • 财政年份:
    2023
  • 资助金额:
    $ 23.8万
  • 项目类别:
Accelerating genomic analysis for time critical clinical applications
加速时间紧迫的临床应用的基因组分析
  • 批准号:
    10593480
  • 财政年份:
    2023
  • 资助金额:
    $ 23.8万
  • 项目类别:
International Conference on Cancer Health Disparities
国际癌症健康差异会议
  • 批准号:
    10606212
  • 财政年份:
    2023
  • 资助金额:
    $ 23.8万
  • 项目类别:
Programming designer DNA nanostructures for blocking enveloped viral infection
编程设计 DNA 纳米结构以阻止包膜病毒感染
  • 批准号:
    10598739
  • 财政年份:
    2023
  • 资助金额:
    $ 23.8万
  • 项目类别:
Non-invasive detection of tumor NTRK gene fusions via rapid, efficient and low-cost extracellular vesicle isolation method
快速、高效、低成本的细胞外囊泡分离方法无创检测肿瘤NTRK基因融合体
  • 批准号:
    10707684
  • 财政年份:
    2023
  • 资助金额:
    $ 23.8万
  • 项目类别:
Michigan Otolaryngology Research Education (MORE)
密歇根耳鼻喉科研究教育(更多)
  • 批准号:
    10721751
  • 财政年份:
    2023
  • 资助金额:
    $ 23.8万
  • 项目类别:
Optimization of electromechanical monitoring of engineered heart tissues
工程心脏组织机电监测的优化
  • 批准号:
    10673513
  • 财政年份:
    2023
  • 资助金额:
    $ 23.8万
  • 项目类别:
Risk stratifying indeterminate pulmonary nodules with jointly learned features from longitudinal radiologic and clinical big data
利用纵向放射学和临床大数据共同学习的特征对不确定的肺结节进行风险分层
  • 批准号:
    10678264
  • 财政年份:
    2023
  • 资助金额:
    $ 23.8万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了