Intelligent instrumentation for assessment and monitoring of hydrogen blend fuels in domestic boilers

用于评估和监测家用锅炉氢混合燃料的智能仪表

基本信息

  • 批准号:
    EP/X020789/1
  • 负责人:
  • 金额:
    $ 40.76万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

Significant reduction of greenhouse gas emissions (GHG) has become the utmost endeavour to achieve net-zero emissions by 2050. In the UK, domestic heating itself is responsible for 17% of the total GHG emissions, this is comparable to the contribution of all petrol and diesel cars (BEIS, January 2022). Therefore, the decarbonization of domestic heat is a big challenge. A sustainable route to reduce GHG is to replace natural gas (NG) with hydrogen (H2) since the combustion of H2 does not produce CO2. However, the challenge for H2 combustion is that its combustion characteristics substantially differ from NG (methane, CH4), e.g., its use affects combustion stability, heat release and NOx emission, and increases the combustion rate due to a higher H2 flame temperature. Various technological challenges are also associated with using pure H2 such as its production, safety, quick charge capability and low density, which limits its storage capabilities. At this transitional stage, a practical option is the use of higher H2 enriched fuel (i.e., more than 20% blend with NG), which would be a promising solution to lower the CO2 emission compared with other fossil fuels. However, the impacts of higher H2 enriched fuels on the widely used condensing heating boilers are not extensively studied and fully understood. The H2 enrichment leads to higher flame radicals such as OH*, CN*, CH* and C2*, higher combustion temperature and flame destabilisation, thus triggering higher NOx formation. The flame radicals are closely related to the combustion structure, temperature, heat release and pollution emissions. Moreover, domestic condensing boilers use premixed cylindrical/surface burners, and these burners produce an array of flames. It is extremely difficult to measure flame radical information in different depths of the array of flames using existing measurement systems. The development of an intelligent instrumentation system has, therefore, become indispensable to assess and monitor the flame radical emissions and NOx formation process at different depths of flames, thus facilitating an in-depth understanding of the combustion process of different H2/CH4 blends.This project will develop and implement a new instrumentation system based on multi-spectral light field imaging to assess and monitor the flame radicals and temperatures with different H2/CH4 blends in domestic boilers. Light field image formation and depth reconstruction models will be developed to generate flame radical images at different depths for different spectral bands. The developed system will provide distinctive capabilities for characterising and quantifying the radical information and temperature profiles of a flame in a single exposure, simultaneously. The proposed project will also develop an intelligent data-driven model based on machine learning to predict NOx emission, thus, facilitating the improvement of domestic boiler performance. The relationships between flame radical characteristics and NOx emission will be established by conducting a series of experiments initially on a lab-scale test rig and then on commercial domestic boilers under different H2/CH4 blends and boiler settings. The prototype system will also be tested on a gas turbine test rig to evaluate its wider applicability. Experiments will be conducted to investigate the characteristics of CO2, H2 and ammonia (NH3) blend combustion, thus providing an in-depth understanding of stability regions and NOx emission with different proportions of CO2/H2/NH3 in the blend.The outcomes of this research will provide in-depth knowledge of the combustion characteristics of H2 blends, understanding of the boiler efficiency and pollutant formation process of domestic boilers. Once the system is developed, it will be used for the design of domestic boilers, and the engineering insights produced during the project could be used to develop a portable diagnostic tool for routine monitoring of blended-fuel boilers.
大幅减少温室气体排放已成为到2050年实现净零排放的最大努力。在英国,家庭供暖本身占温室气体排放总量的17%,与所有汽油和柴油汽车的贡献相当(BEIS,2022年1月)。因此,国内热力脱碳是一个很大的挑战。减少GHG的可持续途径是用氢气(H2)代替天然气(NG),因为H2的燃烧不产生CO2。然而,H2燃烧的挑战在于其燃烧特性与NG(甲烷,CH 4)显著不同,例如,其使用影响燃烧稳定性、热释放和NOx排放,并且由于较高的H2火焰温度而增加燃烧速率。各种技术挑战也与使用纯H2相关,例如其生产,安全性,快速充电能力和低密度,这限制了其存储能力。在该过渡阶段,实际的选择是使用更高的富H2燃料(即,与天然气混合超过20%),这将是与其他化石燃料相比降低CO2排放的有前途的解决方案。然而,高富氢燃料对广泛使用的冷凝式加热锅炉的影响尚未得到广泛研究和充分理解。H2富集导致更高的火焰自由基,例如OH*、CN*、CH* 和C2*,更高的燃烧温度和火焰不稳定,从而触发更高的NOx形成。火焰自由基与燃烧结构、温度、放热和污染物排放密切相关。此外,家用冷凝锅炉使用预混合圆柱形/表面燃烧器,并且这些燃烧器产生火焰阵列。使用现有的测量系统来测量火焰阵列的不同深度中的火焰基信息是极其困难的。因此,开发智能仪表系统对于评估和监测不同火焰深度处的火焰自由基排放和NOx形成过程是必不可少的,本项目将开发和实施一种基于多通道的新型测量系统,光谱光场成像,以评估和监测家用锅炉中不同H2/CH 4混合物的火焰自由基和温度。将开发光场图像形成和深度重建模型,以生成不同光谱波段的不同深度的火焰自由基图像。开发的系统将提供独特的功能,用于表征和量化的自由基信息和温度分布的火焰在一个单一的曝光,同时。该项目还将开发基于机器学习的智能数据驱动模型,以预测NOx排放,从而促进家用锅炉性能的改善。火焰自由基特性和NOx排放之间的关系将建立进行一系列的实验,首先在实验室规模的试验台,然后在商业家用锅炉不同的H2/CH 4混合物和锅炉设置。原型系统还将在燃气涡轮机试验台上进行测试,以评估其更广泛的适用性。通过实验研究CO2、H2和NH3混合燃料的燃烧特性,深入了解混合燃料中不同CO2/H2/NH3比例下的稳定区域和NOx排放特性,为深入了解H2混合燃料的燃烧特性提供依据。了解家用锅炉的锅炉效率和污染物形成过程。该系统一旦开发完成,将用于家用锅炉的设计,项目期间产生的工程见解可用于开发便携式诊断工具,用于混合燃料锅炉的日常监测。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Md Moinul Hossain其他文献

Condition monitoring of an oxy-biomass combustion process through flame imaging and incremental deep learning
通过火焰成像和增量深度学习对氧-生物质燃烧过程进行状态监测
  • DOI:
    10.1016/j.energy.2025.137196
  • 发表时间:
    2025-09-30
  • 期刊:
  • 影响因子:
    9.400
  • 作者:
    Li Qin;Gang Lu;Md Moinul Hossain;Andy Morris;Yong Yan
  • 通讯作者:
    Yong Yan

Md Moinul Hossain的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

SCIENTIFIC AND PROGRAM SUPPORT SERVICES
科学和计划支持服务
  • 批准号:
    10942909
  • 财政年份:
    2023
  • 资助金额:
    $ 40.76万
  • 项目类别:
Harnessing polymicrobial interactions in the catheterized urinary tract to identify novel inhibitors of Proteus mirabilis urease activity
利用插管尿路中的多种微生物相互作用来鉴定奇异变形杆菌尿素酶活性的新型抑制剂
  • 批准号:
    10678389
  • 财政年份:
    2023
  • 资助金额:
    $ 40.76万
  • 项目类别:
Resource Section
资源部分
  • 批准号:
    10773479
  • 财政年份:
    2023
  • 资助金额:
    $ 40.76万
  • 项目类别:
BSL-3 Practices Core
BSL-3 实践核心
  • 批准号:
    10793829
  • 财政年份:
    2023
  • 资助金额:
    $ 40.76万
  • 项目类别:
Reagentless Sensor Technologies For Continuous Monitoring of Heart Failure Biomarkers
用于连续监测心力衰竭生物标志物的无试剂传感器技术
  • 批准号:
    10636089
  • 财政年份:
    2023
  • 资助金额:
    $ 40.76万
  • 项目类别:
Antiviral & Antimicrobial Countermeasures Discovery and Development Core
抗病毒物质
  • 批准号:
    10793955
  • 财政年份:
    2023
  • 资助金额:
    $ 40.76万
  • 项目类别:
GigaFIBI; rapid, large-format histology-resolution imaging for Intraoperative assessment of breast lumpectomy margins
千兆FIBI;
  • 批准号:
    10568823
  • 财政年份:
    2023
  • 资助金额:
    $ 40.76万
  • 项目类别:
High throughput platform for simultaneous multiparametric assessment of cardiac physiology for heart failure drug development
用于心力衰竭药物开发的心脏生理学同步多参数评估的高通量平台
  • 批准号:
    10745000
  • 财政年份:
    2023
  • 资助金额:
    $ 40.76万
  • 项目类别:
Core A: Ultrastructural Assessment & Human Tissue
核心 A:超微结构评估
  • 批准号:
    10627575
  • 财政年份:
    2023
  • 资助金额:
    $ 40.76万
  • 项目类别:
Core B: Functional Assessment & Instrumentation
核心 B:功能评估
  • 批准号:
    10627576
  • 财政年份:
    2023
  • 资助金额:
    $ 40.76万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了