Effective population adjustment in evidence synthesis of randomised controlled trials for health technology assessment
卫生技术评估随机对照试验证据合成中的有效人群调整
基本信息
- 批准号:MR/W016648/1
- 负责人:
- 金额:$ 98.61万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
To decide which treatments to recommend to patients, we need reliable estimates of how the different treatments compare to each other. However, studies that directly compare all treatments of interest may not be available. Instead, we often have a mixture of studies that compare a selection of different treatments, or in some cases only a single treatment. Furthermore, there may be differences between the patients in the different studies that change how well the treatments work. To address these issues, a statistical method called "multilevel network meta-regression" (ML-NMR) is available. This method combines evidence from multiple studies, where some studies provide individual-level data on every participant and some only provide published summary estimates, and accounts for differences between patient populations - a process known as "population adjustment". Importantly, this method can produce estimates that are specific to a relevant population for decision-making (e.g. the UK patient population). This means that decision makers such as the National Institute for Health and Care Excellence (NICE) can make better decisions that are targeted to the relevant population. However, there are several barriers to the use of ML-NMR in practice which need to be addressed if it is to be used more widely and effectively for decision-making. Firstly, the method requires substantial amounts of data on each treatment, which are not always available. For example, a company making a submission to NICE is likely to have individual-level data from their own trials of their own treatment, but only published summaries from their competitors' trials. Without enough data, we may instead attempt to simplify the statistical model by making assumptions about how different groups of treatments work, but these assumptions may not be appropriate, which can lead to systematic errors in the results and the wrong conclusions being drawn. Secondly, it is common for clinical trials to encounter issues such as missing data, participants not receiving the treatment they were assigned, or participants being allowed to switch treatments (e.g. if their disease progresses). Statistical methods are available to account for these issues, since if they are not handled correctly they can lead to systematic errors in the results. However, currently these methods cannot be used together with methods to account for differences between populations like ML-NMR. This project aims to address these issues to ensure that ML-NMR works well in situations most frequently encountered by decision makers. This will be achieved by: i) developing novel statistical methods for ML-NMR to use additional information available from published trial reports; ii) making recommendations to update guidelines for how clinical trials are reported, to improve the availability of this additional information in published reports; iii) investigating the performance of the statistical methods through real and simulated examples; iv) developing novel statistical methods to combine population adjustment with methods that account for common issues in clinical trials such as missing data or switching treatments; and v) developing accessible software tools and training courses to support the uptake of the methods.This research will have direct impact for decision makers such as NICE and will lead to better informed treatment decisions. The proposed advances in statistical methods and updated recommendations for reporting clinical trials have the potential to transform healthcare decision-making in wider contexts, even when only published summary data are available, such as the development of NICE clinical guidelines. Additionally, there are direct applications in personalised medicine, where recommendations are targeted to individuals or smaller groups.
为了决定向患者推荐哪种治疗方法,我们需要可靠地估计不同治疗方法之间的比较。然而,直接比较所有感兴趣的治疗方法的研究可能不可用。相反,我们经常进行混合研究来比较一系列不同的治疗方法,或者在某些情况下仅比较单一的治疗方法。此外,不同研究中的患者之间可能存在差异,从而改变治疗效果。为了解决这些问题,可以使用一种称为“多级网络元回归”(ML-NMR)的统计方法。这种方法结合了多项研究的证据,其中一些研究提供了每个参与者的个人水平数据,一些研究仅提供已发表的摘要估计,并解释了患者群体之间的差异 - 这一过程称为“群体调整”。重要的是,这种方法可以生成特定于相关人群(例如英国患者人群)的估计值以进行决策。这意味着国家健康与护理卓越研究所 (NICE) 等决策者可以针对相关人群做出更好的决策。然而,如果要更广泛、更有效地将 ML-NMR 用于决策,就需要解决在实践中使用 ML-NMR 的一些障碍。首先,该方法需要每种治疗的大量数据,而这些数据并不总是可用的。例如,向 NICE 提交材料的公司可能会拥有来自自己治疗试验的个人数据,但仅发布竞争对手试验的摘要。如果没有足够的数据,我们可能会尝试通过假设不同的治疗组如何发挥作用来简化统计模型,但这些假设可能不合适,这可能会导致结果出现系统性错误并得出错误的结论。其次,临床试验经常遇到数据缺失、参与者未接受分配的治疗或允许参与者改变治疗(例如,如果他们的疾病进展)等问题。统计方法可以解决这些问题,因为如果处理不当,可能会导致结果出现系统错误。然而,目前这些方法不能与解释群体之间差异的方法(例如 ML-NMR)一起使用。该项目旨在解决这些问题,以确保 ML-NMR 在决策者最常遇到的情况下正常工作。这将通过以下方式实现:i) 开发新的 ML-NMR 统计方法,以使用已发表的试验报告中提供的附加信息; ii) 提出建议,更新临床试验报告方式的指南,以提高已发表报告中附加信息的可用性; iii) 通过真实和模拟的例子调查统计方法的性能; iv) 开发新的统计方法,将群体调整与解决临床试验中常见问题(例如数据缺失或转换治疗)的方法结合起来; v) 开发可访问的软件工具和培训课程以支持这些方法的采用。这项研究将对 NICE 等决策者产生直接影响,并将导致更明智的治疗决策。所提出的统计方法的进步和报告临床试验的更新建议有可能在更广泛的背景下改变医疗保健决策,即使只有已发布的摘要数据可用,例如 NICE 临床指南的制定。此外,它还可以直接应用于个性化医疗,其中的建议针对个人或较小的群体。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
sj-pdf-1-mdm-10.1177_0272989X221117162 - Supplemental material for Validating the Assumptions of Population Adjustment: Application of Multilevel Network Meta-regression to a Network of Treatments for Plaque Psoriasis
sj-pdf-1-mdm-10.1177_0272989X221117162 - 验证人口调整假设的补充材料:多级网络元回归在斑块状银屑病治疗网络中的应用
- DOI:10.25384/sage.20644920
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Phillippo D
- 通讯作者:Phillippo D
sj-docx-3-mdm-10.1177_0272989X221117162 - Supplemental material for Validating the Assumptions of Population Adjustment: Application of Multilevel Network Meta-regression to a Network of Treatments for Plaque Psoriasis
sj-docx-3-mdm-10.1177_0272989X221117162 - 验证人口调整假设的补充材料:多级网络元回归在斑块状银屑病治疗网络中的应用
- DOI:10.25384/sage.20644917
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Phillippo D
- 通讯作者:Phillippo D
Antidepressants for pain management in adults with chronic pain: a network meta-analysis.
- DOI:10.1002/14651858.cd014682.pub2
- 发表时间:2023-05-10
- 期刊:
- 影响因子:0
- 作者:Birkinshaw, Hollie;Friedrich, Claire M;Pincus, Tamar
- 通讯作者:Pincus, Tamar
Calibrating a network meta-analysis of diabetes trials of sodium glucose cotransporter 2 inhibitors, glucagon-like peptide-1 receptor analogues and dipeptidyl peptidase-4 inhibitors to a representative routine population: a systematic review protocol.
- DOI:10.1136/bmjopen-2022-066491
- 发表时间:2022-10-27
- 期刊:
- 影响因子:2.9
- 作者:
- 通讯作者:
Unanchored Population-Adjusted Indirect Comparison Methods for Time-to-Event Outcomes Using Inverse Odds Weighting, Regression Adjustment, and Doubly Robust Methods With Either Individual Patient or Aggregate Data.
针对事件发生时间结果的非锚定群体调整间接比较方法,使用逆比值加权、回归调整和双稳健方法,针对个体患者或汇总数据。
- DOI:10.1016/j.jval.2023.11.011
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Park JE
- 通讯作者:Park JE
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Phillippo其他文献
David Phillippo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
眼表菌群影响糖尿病患者干眼发生的人群流行病学研究
- 批准号:82371110
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
发展/减排路径(SSPs/RCPs)下中国未来人口迁移与集聚时空演变及其影响
- 批准号:19ZR1415200
- 批准年份:2019
- 资助金额:0.0 万元
- 项目类别:省市级项目
人大肠癌SP细胞干性表型和基因型分析
- 批准号:81101870
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
不同栽培环境条件下不同基因型牡丹根部细菌种群多样性特征
- 批准号:31070617
- 批准年份:2010
- 资助金额:30.0 万元
- 项目类别:面上项目
孤独症全基因组关联第二阶段研究
- 批准号:81071110
- 批准年份:2010
- 资助金额:32.0 万元
- 项目类别:面上项目
聚合铁-腐殖酸混凝沉淀-絮凝调质过程中絮体污泥微界面特性和群体流变学的研究
- 批准号:20977008
- 批准年份:2009
- 资助金额:34.0 万元
- 项目类别:面上项目
脑肿瘤干细胞新的生物标记筛检及其功能研究
- 批准号:30772243
- 批准年份:2007
- 资助金额:29.0 万元
- 项目类别:面上项目
濒危植物翅果油树Meta-population及其形成机理的研究
- 批准号:30470296
- 批准年份:2004
- 资助金额:8.0 万元
- 项目类别:面上项目
相似海外基金
Personalizing Circumpapillary Retinal Nerve Fiber Layer Thickness Norms for Glaucoma
个性化青光眼环视乳头视网膜神经纤维层厚度标准
- 批准号:
10728042 - 财政年份:2023
- 资助金额:
$ 98.61万 - 项目类别:
A Biobehavioral Intervention to Reduce Adverse Outcomes in Young Adult Testicular Cancer Survivors
减少年轻成年睾丸癌幸存者不良后果的生物行为干预
- 批准号:
10736501 - 财政年份:2023
- 资助金额:
$ 98.61万 - 项目类别:
Genetic and Environmental Influences on Individual Sweet Preference Across Ancestry Groups in the U.S.
遗传和环境对美国不同血统群体个体甜味偏好的影响
- 批准号:
10709381 - 财政年份:2023
- 资助金额:
$ 98.61万 - 项目类别:
Genetic & Social Determinants of Health: Center for Admixture Science and Technology
遗传
- 批准号:
10818088 - 财政年份:2023
- 资助金额:
$ 98.61万 - 项目类别:
Language Identity and Mental Health Disparities among Multilingual 1.5 Generation Asian/Asian American Immigrant Young Adults: A Mixed Methods Study
多语言 1.5 代亚裔/亚裔美国移民年轻人的语言认同和心理健康差异:混合方法研究
- 批准号:
10715803 - 财政年份:2023
- 资助金额:
$ 98.61万 - 项目类别:
Person-centered quality measurement and management in a system for addictions treatment in New York State
纽约州成瘾治疗系统中以人为本的质量测量和管理
- 批准号:
10772463 - 财政年份:2023
- 资助金额:
$ 98.61万 - 项目类别:
Promoting Parallel Parenting: Putting Children First during High-Conflict Divorce and Separation (PCF)
促进平行养育:在高度冲突的离婚和分居期间将孩子放在第一位(PCF)
- 批准号:
10757876 - 财政年份:2023
- 资助金额:
$ 98.61万 - 项目类别:
Identifying adolescent social media response in real-time: Risk and protective factors for Asian American mental health
实时识别青少年社交媒体反应:亚裔美国人心理健康的风险和保护因素
- 批准号:
10814674 - 财政年份:2023
- 资助金额:
$ 98.61万 - 项目类别:
The Impact of Alzheimer’s Disease and Related Dementias on Nursing Home Care and Quality for Persons with Serious Mental Illness
阿尔茨海默病和相关痴呆症对严重精神疾病患者的疗养院护理和质量的影响
- 批准号:
10803736 - 财政年份:2023
- 资助金额:
$ 98.61万 - 项目类别:
Health Disparities in Utilization, Quality, and Outcomes for Three Common Ocular Conditions (HealthDOC)
三种常见眼部疾病的利用、质量和结果方面的健康差异 (HealthDOC)
- 批准号:
10559239 - 财政年份:2023
- 资助金额:
$ 98.61万 - 项目类别:














{{item.name}}会员




