Confocal image acquisition system with capacity for robotic fluid additions: flexible tool for high-content screening

具有机器人液体添加能力的共焦图像采集系统:用于高内涵筛选的灵活工具

基本信息

  • 批准号:
    MR/X013383/1
  • 负责人:
  • 金额:
    $ 48.37万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    已结题

项目摘要

Experiments investigating cell physiology and drug responses often exploit light-emitting (fluorescent) proteins and probes. Fluorescent probes, engineered to report on different cellular parameters, can be used as "biosensors". In the past, these experiments were conducted examining a small visual field under a microscope, manually adding compounds to dishes carrying cells, and selecting a small number of cells on which to measure changes. New image-acquisition systems allow this process to be done in an automated way. Cells are grown on plates with tens or hundreds of separate wells. At specified time points in the experiment, robotic arms add different compounds to the different wells, while images are captured by a camera which detects light of different colours, emitted by different biosensors. Small, localised changes in response to perturbations are captured rapidly and continuously over a period of time. Automated computer-based analysis of the images greatly increases the efficiency of work.Such image-acquisition systems have made it possible to increase the number of cells studied by orders of magnitude. This has eliminated experimenter bias and allowed us to focus on subsets of cells. Optical resolution has improved, so we can even study sub-cellular structures, called organelles. In addition, the possibility of using multiple biosensors simultaneously has allowed measurement of multiple characteristics in the same cell/organelle. Assays with multiple readouts are described as having "high-content". Furthermore many different conditions can be rapidly compared on a single plate, (e.g. composition of the fluid added, genetic makeup of cells, etc.). This allows rapid "screening" of a large number of compounds, for instance, which can be useful when developing drugs.The image-acquisition system we propose to buy will be used by many research groups, and will be available across the UCL campus. It will allow us to develop and run different high-content assays.One proposed study will explore potential new therapies for cancer. All our cells have mitochondria, organelles that burn fuels and generate packages of energy, readily available for the cell's needs. Mitochondria have their own genetic material, mtDNA, distinct from that in the cell's nucleus. Scientists have discovered that tumour cells very often have changes, called mutations, in their mtDNA, not present in the surrounding healthy tissues. These mtDNA mutations can be used as targeting labels, directing specialized enzymes (called mitoTALENs) to make damaging cuts in mtDNA from tumour cells, without affecting the nearby tissues. Cells with damaged mtDNA grow more slowly, and are more susceptible to chemotherapy drugs. Using high-content screening techniques, tumour and healthy cells will be treated with mitoTALENs under a variety of different conditions. The information gained will validate the approach, and lay foundations for future therapy development.Another lab will work on improving treatment for people with cystic fibrosis (CF). In CF the CFTR protein is missing or defective. CFTR regulates flow of anions (negatively charged chloride and bicarbonate ions) into and out of cells that line ducts of our body (airways, intestine, pancreas, liver etc). The flow of bicarbonate is especially important for controlling mucous secretions produced by these duct cells. CFTR-targeted drugs can help CF patients, but we know that, at least in liver ducts, current drugs restore chloride but not bicarbonate flow. We will generate a model anion flux biosensor system. This will allow us to rapidly monitor chloride and bicarbonate flow and to determine how CFTR drugs affect it for 62 different variants of CFTR found in patients. What we will learn about processes at the root of CF disease will help clinicians choose the best drugs for individual patients, and guide future drug development.
研究细胞生理学和药物反应的实验经常利用发光(荧光)蛋白和探针。荧光探针,设计用于报告不同的细胞参数,可以用作“生物传感器”。在过去,这些实验是在显微镜下检查一个小的视野,人工向携带细胞的培养皿中添加化合物,并选择少量细胞来测量变化。新的图像采集系统允许以自动化的方式完成这一过程。细胞生长在有数十或数百个独立孔的板上。在实验的特定时间点,机械臂将不同的化合物添加到不同的井中,同时由一台摄像机捕获图像,该摄像机检测到由不同生物传感器发出的不同颜色的光。在一段时间内迅速而连续地捕捉到响应扰动的局部小变化。基于计算机的自动图像分析大大提高了工作效率。这样的图像采集系统使研究细胞的数量以数量级增加成为可能。这消除了实验者的偏见,使我们能够专注于细胞的子集。光学分辨率已经提高,因此我们甚至可以研究亚细胞结构,称为细胞器。此外,同时使用多个生物传感器的可能性已经允许在同一细胞/细胞器中测量多个特征。具有多个读数的测定被描述为具有“高含量”。此外,可以在单个平板上快速比较许多不同的条件(例如,添加的液体的组成,细胞的遗传组成等)。例如,这允许对大量化合物进行快速“筛选”,这在开发药物时可能很有用。我们建议购买的图像采集系统将被许多研究小组使用,并将在伦敦大学学院校园内使用。它将允许我们开发和运行不同的高含量分析。一项拟议的研究将探索癌症的潜在新疗法。我们所有的细胞都有线粒体,这是一种燃烧燃料并产生能量包的细胞器,可以随时满足细胞的需要。线粒体有自己的遗传物质mtDNA,与细胞核中的遗传物质不同。科学家们发现,肿瘤细胞的mtDNA经常会发生变化,这种变化被称为突变,而这种变化并不存在于周围的健康组织中。这些mtDNA突变可以用作靶向标记,指导专门的酶(称为mitoTALENs)在不影响附近组织的情况下,对肿瘤细胞的mtDNA进行破坏性切割。mtDNA受损的细胞生长更慢,更容易受到化疗药物的影响。使用高含量筛选技术,肿瘤和健康细胞将在各种不同条件下使用mitoTALENs进行治疗。获得的信息将验证该方法,并为未来的治疗发展奠定基础。另一个实验室将致力于改善囊性纤维化(CF)患者的治疗方法。在CF中,CFTR蛋白缺失或有缺陷。CFTR调节阴离子(带负电荷的氯离子和碳酸氢盐离子)进出我们身体管道(气道、肠、胰腺、肝脏等)的细胞。碳酸氢盐的流动对于控制这些导管细胞产生的粘液分泌物尤为重要。针对cfr的药物可以帮助CF患者,但我们知道,至少在肝管中,目前的药物恢复氯化物而不是碳酸氢盐的流动。我们将生成一个模型阴离子通量生物传感器系统。这将使我们能够快速监测氯化物和碳酸氢盐的流动,并确定CFTR药物对患者中发现的62种不同CFTR变体的影响。我们将了解CF疾病的根源过程,这将有助于临床医生为个体患者选择最佳药物,并指导未来的药物开发。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paola Vergani其他文献

The ABC protein turned chloride channel whose failure causes cystic fibrosis
导致囊性纤维化的 ABC 蛋白转化的氯离子通道发生故障
  • DOI:
    10.1038/nature04712
  • 发表时间:
    2006-03-22
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    David C. Gadsby;Paola Vergani;László Csanády
  • 通讯作者:
    László Csanády
A Triad of Residues F1296-N1303-R1358 in NBD2 of CFTR is Involved in ATP-driven Gating
  • DOI:
    10.1016/j.bpj.2008.12.2409
  • 发表时间:
    2009-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Andras Szollosi;Paola Vergani;Laszlo Csanady
  • 通讯作者:
    Laszlo Csanady
Molecular Models of the Closed State of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR)
  • DOI:
    10.1016/j.bpj.2012.11.3459
  • 发表时间:
    2013-01-29
  • 期刊:
  • 影响因子:
  • 作者:
    Valentina Corradi;Paola Vergani;D. Peter Tieleman
  • 通讯作者:
    D. Peter Tieleman
Energetic Coupling at the Nucleotide-Binding Domain/Transmembrane Domain Interface of CFTR
  • DOI:
    10.1016/j.bpj.2010.12.1651
  • 发表时间:
    2011-02-02
  • 期刊:
  • 影响因子:
  • 作者:
    Daniella R. Muallem;Sabine Kobayter;Arun Kelay;László Csanády;Paola Vergani
  • 通讯作者:
    Paola Vergani
Using Correlation Analysis To Predict Pairs Of Energetically Coupled Residues At The NBD-TMD Interface In CFTR
  • DOI:
    10.1016/j.bpj.2008.12.2410
  • 发表时间:
    2009-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Daniella Muallem;Arturo Araujo;Paola Vergani
  • 通讯作者:
    Paola Vergani

Paola Vergani的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paola Vergani', 18)}}的其他基金

Molecular mechanism of CFTR channel gating: transmission of conformational signals originating at the catalytic site
CFTR通道门控的分子机制:源自催化位点的构象信号的传输
  • 批准号:
    G0501200/1
  • 财政年份:
    2006
  • 资助金额:
    $ 48.37万
  • 项目类别:
    Research Grant

相似国自然基金

基于CE-3及IMAGE卫星地球等离子体层EUV探测数据的反演研究
  • 批准号:
    41904148
  • 批准年份:
    2019
  • 资助金额:
    27.0 万元
  • 项目类别:
    青年科学基金项目
面向英汉双向跨语言图像检索的文本分析关键技术研究
  • 批准号:
    61170095
  • 批准年份:
    2011
  • 资助金额:
    57.0 万元
  • 项目类别:
    面上项目
Raw-Image微小物体高精度位姿测量法
  • 批准号:
    61105029
  • 批准年份:
    2011
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
关于图像处理模型的目标函数构造及其数值方法研究
  • 批准号:
    11071228
  • 批准年份:
    2010
  • 资助金额:
    32.0 万元
  • 项目类别:
    面上项目
双星中性原子探测图像在地磁暴期间的时序演化过程反演分析
  • 批准号:
    40974100
  • 批准年份:
    2009
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目
微复型过程中聚合物流动填充机理的可视化实验分析
  • 批准号:
    50975227
  • 批准年份:
    2009
  • 资助金额:
    38.0 万元
  • 项目类别:
    面上项目
基于图像的Visuall Hull的立体感实时绘制及其高速图形处理硬件(GPU)的实现机制
  • 批准号:
    60573149
  • 批准年份:
    2005
  • 资助金额:
    21.0 万元
  • 项目类别:
    面上项目
分数阶傅里叶变换多分量图像数字水印研究
  • 批准号:
    60472044
  • 批准年份:
    2004
  • 资助金额:
    20.0 万元
  • 项目类别:
    面上项目

相似海外基金

Acquisition of Zeiss LSM980 with Airyscan 2, a super-resolution point scanning confocal microscope
购买 Zeiss LSM980 和 Airyscan 2(超分辨率点扫描共焦显微镜)
  • 批准号:
    10632893
  • 财政年份:
    2023
  • 资助金额:
    $ 48.37万
  • 项目类别:
Acquisition of a Zeiss LSM 900 confocal microscope with Airyscan 2 for an Imaging and Microscopy Core
购买配备 Airyscan 2 的 Zeiss LSM 900 共焦显微镜作为成像和显微镜核心
  • 批准号:
    10632858
  • 财政年份:
    2023
  • 资助金额:
    $ 48.37万
  • 项目类别:
Leica Stellaris 8 Confocal for Imaging Core
Leica Stellaris 8 共焦成像核心
  • 批准号:
    10630453
  • 财政年份:
    2023
  • 资助金额:
    $ 48.37万
  • 项目类别:
Machine Learning and Reflectance Confocal Microscopy for Biopsy-free Virtual Histology of Squamous Skin Neoplasms
机器学习和反射共焦显微镜用于鳞状皮肤肿瘤的免活检虚拟组织学
  • 批准号:
    10569029
  • 财政年份:
    2022
  • 资助金额:
    $ 48.37万
  • 项目类别:
Machine Learning and Reflectance Confocal Microscopy for Biopsy-free Virtual Histology of Squamous Skin Neoplasms
机器学习和反射共焦显微镜用于鳞状皮肤肿瘤的免活检虚拟组织学
  • 批准号:
    10364550
  • 财政年份:
    2022
  • 资助金额:
    $ 48.37万
  • 项目类别:
Acquisition of the Agilent Cytation C10 confocal imaging reader for enhancing biomedical research excellence at Clemson University
采购 Agilent Cytation C10 共焦成像阅读器,以提高克莱姆森大学的生物医学研究卓越性
  • 批准号:
    10798537
  • 财政年份:
    2022
  • 资助金额:
    $ 48.37万
  • 项目类别:
Zeiss LSM 980 NLO Confocal Microscope with Airyscan2 for UCI Optical Biology Core
适用于 UCI 光学生物学核心的配备 Airyscan2 的 Zeiss LSM 980 NLO 共焦显微镜
  • 批准号:
    10429736
  • 财政年份:
    2022
  • 资助金额:
    $ 48.37万
  • 项目类别:
Spinning Disk Confocal and Single Molecule Localization Microscope
转盘共焦和单分子定位显微镜
  • 批准号:
    10177496
  • 财政年份:
    2021
  • 资助金额:
    $ 48.37万
  • 项目类别:
Acquisition of a confocal Raman microscope for molecular fingerprinting of cells and tissue
获取用于细胞和组织分子指纹分析的共焦拉曼显微镜
  • 批准号:
    10582119
  • 财政年份:
    2021
  • 资助金额:
    $ 48.37万
  • 项目类别:
Supplement for Equipment Purchase - Hyperspectral Near Infrared Confocal Microscope
设备采购补充-高光谱近红外共焦显微镜
  • 批准号:
    10582344
  • 财政年份:
    2020
  • 资助金额:
    $ 48.37万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了