OpenGHG: A community platform for greenhouse gas data science

OpenGHG:温室气体数据科学社区平台

基本信息

  • 批准号:
    NE/V002996/1
  • 负责人:
  • 金额:
    $ 70.48万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    已结题

项目摘要

With numerous governments, cities, and organisations declaring climate emergencies and net-zero emissions targets, greenhouse gases (GHGs) are now the focus of international geopolitics and UK domestic policies. Furthermore, with the recent identification of violations of the Montreal Protocol, ozone depleting substances (ODS), are receiving renewed attention. It is therefore critically important to be able to analyse GHG and ODS emissions trends, examine spatial patterns, estimate future trajectories, and explore mitigation options in an open, transparent and publicly accessible way. Our proposed project will enable this, using state-of-the-art computing technology to create a platform, "OpenGHG".The estimation of GHG and ODS emissions requires close collaboration between a diverse group of scientists and stakeholders: "bottom-up" methods rely on statistical information collected by governments and industries, combined with scientific studies of the emissions intensity of particular activities, or the development of computer models that describe how human or natural processes produce or absorb GHGs. Complementary "top-down" techniques rely on instruments developed by spectroscopists and analytical chemists, the data from which are analysed along with outputs from meteorological models using advanced statistical methods. The data that is being generated by these diverse research and stakeholder communities is growing rapidly. However, the development of computational tools to help researchers aggregate data from such a wide range of sources and carry out and share analyses has not kept pace. Furthermore, given the sensitive nature of, for example, the inference of national GHG or ODS emissions, these communities must urgently take steps to make their analyses more transparent and reproducible.OpenGHG meets these needs, by providing an open, cloud-based, platform for researchers to share data and analysis methods and publish workflows. Furthermore, we have co-designed with our stakeholders, a range of tools that will facilitate the sharing of research outputs with governments, private companies and the public. The OpenGHG platform will:- Continuously incorporate and standardise up to date GHG and ODS measurements, bottom-up emission estimates, and a range of ancillary information related to GHG and ODS emissions. This data will be pulled automatically, or on demand, from a range of public archives, or pushed to the platform by data providers seeking to analyse or share their own data - Provide a wide range of analysis options, including the ability to design, publish and share custom workflows- Allow production of new top-down and bottom-up emissions estimates by accessing pre-existing and newly developed models and methods incorporated into the platform- Provide users with lower levels of computational expertise an easy-to-use interface for the most useful data analysis and visualisation. This will include comparisons of top-down and bottom-up estimates of emissions from different sectors of the economy, and potential future warming from different emissions scenarios.
随着许多政府、城市和组织宣布气候紧急状态和净零排放目标,温室气体(GHG)现在成为国际地缘政治和英国国内政策的焦点。此外,随着最近查明违反《蒙特利尔议定书》的行为,消耗臭氧层物质重新受到关注。因此,能够以公开、透明和公众可获得的方式分析温室气体和消耗臭氧层物质排放趋势、研究空间格局、估计未来轨迹并探讨减缓备选办法至关重要。我们提议的项目将利用最先进的计算技术创建一个平台“OpenGHG”,以实现这一目标。温室气体和消耗臭氧层物质排放量的估算需要不同科学家和利益攸关方之间的密切合作:“自下而上”的方法依靠政府和工业收集的统计资料,加上对特定活动排放强度的科学研究,或开发计算机模型,描述人类或自然过程如何产生或吸收温室气体。补充性的“自上而下”技术依赖于光谱学家和分析化学家开发的仪器,这些仪器的数据沿着使用先进统计方法的气象模型的输出进行分析。这些不同的研究和利益相关者社区产生的数据正在迅速增长。然而,帮助研究人员从如此广泛的来源汇总数据并进行和分享分析的计算工具的发展并没有跟上步伐。此外,由于国家温室气体或消耗臭氧层物质排放量的推断等敏感性,这些社区必须立即采取措施,使其分析更加透明和可重复。OpenGHG通过为研究人员提供一个开放的、基于云的平台来共享数据和分析方法,并发布工作流程,从而满足了这些需求。此外,我们还与利益相关者共同设计了一系列工具,以促进与政府、私营公司和公众分享研究成果。OpenGHG平台将:-不断纳入和汇编最新的温室气体和消耗臭氧层物质测量、自下而上的排放估算以及一系列与温室气体和消耗臭氧层物质排放相关的辅助信息。这些数据将自动或按需从一系列公共档案中提取,或由寻求分析或共享自己数据的数据提供商推送到平台-提供广泛的分析选项,包括设计,发布和共享自定义工作流程-允许通过访问预处理数据,现有的和新开发的模型和方法整合到平台中-为计算专业知识水平较低的用户提供易于使用的界面,以进行最有用的数据分析和可视化。这将包括比较不同经济部门自上而下和自下而上的排放估计数,以及不同排放情景下未来可能出现的变暖。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Joint inference of CFC lifetimes and banks suggests previously unidentified emissions.
  • DOI:
    10.1038/s41467-021-23229-2
  • 发表时间:
    2021-05-18
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Lickley M;Fletcher S;Rigby M;Solomon S
  • 通讯作者:
    Solomon S
A machine learning emulator for Lagrangian particle dispersion model footprints: a case study using NAME
用于拉格朗日粒子分散模型足迹的机器学习模拟器:使用 NAME 的案例研究
  • DOI:
    10.5194/egusphere-2022-1174
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fillola E
  • 通讯作者:
    Fillola E
CFC-11 emissions are declining as expected in Western Europe
西欧 CFC-11 排放量正按预期下降
  • DOI:
    10.5194/egusphere-2023-40
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Redington A
  • 通讯作者:
    Redington A
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthew Rigby其他文献

Persistent emissions of ozone-depleting carbon tetrachloride from China during 2011–2021
2011 年至 2021 年期间中国持续排放消耗臭氧层的四氯化碳
  • DOI:
    10.1038/s41561-025-01721-4
  • 发表时间:
    2025-06-23
  • 期刊:
  • 影响因子:
    16.100
  • 作者:
    Minde An;Bo Yao;Luke M. Western;Ronald G. Prinn;Xingchen Zhao;Jianxin Hu;Jens Mühle;Stefan Reimann;Martin K. Vollmer;Christina M. Harth;Simon O’Doherty;Ray F. Weiss;Wenxue Chi;Honghui Xu;Yan Yu;Anita L. Ganesan;Matthew Rigby
  • 通讯作者:
    Matthew Rigby
Update on Ozone-Depleting Substances (ODSs) and Other Gases of Interest to the Montreal Protocol, Chapter 1 in Scientific Assessment of Ozone Depletion: 2014, Global Ozone Research and Monitoring Project-Report No.55, 416 pp., World Meteorological Organiz | NIST
《蒙特利尔议定书》中消耗臭氧层物质 (ODS) 和其他相关气体的更新,臭氧消耗科学评估第 1 章:2014 年,全球臭氧研究和监测项目报告第 55 号,第 416 页,世界气象组织 |
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lucy Carpenter;S. Reimann;A. Engel;S. Montzka;J. B. Burkholder;Cathy Clerbaux;B. Hall;Shari A. Yvon;D. R. Blake;M. Dorf;G. Dutton;P. Fraser;Lucien Froidevaux;François Hendrick;Jianxin Hu;Ashley Jones;P. Krummel;L. Kuijpers;M. Kurylo;Qing Liang;Emmanuel Mahieu;Jens M hle;S. O. Doherty;K. Ohnishi;V. L. Orkin;K. Pfeilsticker;Matthew Rigby;I. Simpson;Y. Yokouchi
  • 通讯作者:
    Y. Yokouchi
Perfluorocyclobutane (PFC-318, c-C4F8) in the global atmosphere
全球大气中的全氟环丁烷(PFC-318,c-C4F8)
  • DOI:
    10.5194/acp-19-10335-2019
  • 发表时间:
    2019-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jens Mühle;Cathy M. Trudinger;Matthew Rigby;Luke M. Western;Martin K. Vollmer;Sunyoung Park;Alistair J. Manning;Dan Say;Anita L. Ganesan;Paul Steele;Diane J. Ivy;Tim Arnold;Shanlan Li;Andreas Stohl;Chris M. Harth;Peter K. Salameh;Archie McCulloch;Simon O’
  • 通讯作者:
    Simon O’
Rewiring Neuronal Circuits: A New Method for Fast Neurite Extension and Functional Neuronal Connection.
重新布线神经元电路:一种快速神经突延伸和功能性神经元连接的新方法。
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. H. Magdesian;M. H. Magdesian;Madeleine Anthonisen;G. M. Lopez;Xue Ying Chua;Matthew Rigby;Peter H. Grutter
  • 通讯作者:
    Peter H. Grutter
Building an artificial neural network with neurons
用神经元构建人工神经网络
  • DOI:
    10.1063/1.5086873
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Matthew Rigby;Madeleine Anthonisen;Xue Ying Chua;A. Kaplan;Alyson E. Fournier;Peter H. Grutter
  • 通讯作者:
    Peter H. Grutter

Matthew Rigby的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matthew Rigby', 18)}}的其他基金

Investigating HALocarbon impacts on the global Environment (InHALE)
调查 HALocarbon 对全球环境的影响 (InHALE)
  • 批准号:
    NE/X00452X/1
  • 财政年份:
    2022
  • 资助金额:
    $ 70.48万
  • 项目类别:
    Research Grant
COVID-19: Rapid detection of the impact of COVID-19 on UK greenhouse gas emissions
COVID-19:快速检测 COVID-19 对英国温室气体排放的影响
  • 批准号:
    NE/V00963X/1
  • 财政年份:
    2020
  • 资助金额:
    $ 70.48万
  • 项目类别:
    Research Grant
Detection and Attribution of Regional greenhouse gas Emissions in the UK (DARE-UK)
英国区域温室气体排放的检测和归因(DARE-UK)
  • 批准号:
    NE/S004211/1
  • 财政年份:
    2019
  • 资助金额:
    $ 70.48万
  • 项目类别:
    Research Grant
HUGS: a Hub for Uk Greenhouse gas data Science
HUGS:英国温室气体数据科学中心
  • 批准号:
    NE/S016155/1
  • 财政年份:
    2019
  • 资助金额:
    $ 70.48万
  • 项目类别:
    Research Grant
The Global Methane Budget
全球甲烷预算
  • 批准号:
    NE/N016548/1
  • 财政年份:
    2016
  • 资助金额:
    $ 70.48万
  • 项目类别:
    Research Grant
Are national HFC emissions reports suitable for global policy negotiation?
国家氢氟碳化合物排放报告是否适合全球政策谈判?
  • 批准号:
    NE/M014851/1
  • 财政年份:
    2015
  • 资助金额:
    $ 70.48万
  • 项目类别:
    Research Grant
Advanced computing architecture to support the estimation and reporting of UK GHG emissions
先进的计算架构支持英国温室气体排放的估算和报告
  • 批准号:
    NE/L013088/1
  • 财政年份:
    2013
  • 资助金额:
    $ 70.48万
  • 项目类别:
    Research Grant
Towards treaty verification of all non-CO2 long-lived greenhouse gases
对所有非二氧化碳长寿命温室气体进行条约核查
  • 批准号:
    NE/I021365/1
  • 财政年份:
    2012
  • 资助金额:
    $ 70.48万
  • 项目类别:
    Fellowship

相似国自然基金

碳-铁-微生物对滩涂围垦稻田土壤团聚体形成和稳定的调控机制
  • 批准号:
    41977088
  • 批准年份:
    2019
  • 资助金额:
    61.0 万元
  • 项目类别:
    面上项目
水稻种子际固有细菌的群落多样性及其瞬时演替研究
  • 批准号:
    30770069
  • 批准年份:
    2007
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: CyberTraining: Implementation: Medium: CyberTraining of Construction (CyCon) Research Workforce Through an Educational and Community Engagement Platform
协作研究:网络培训:实施:媒介:通过教育和社区参与平台对建筑 (CyCon) 研究人员进行网络培训
  • 批准号:
    2229604
  • 财政年份:
    2023
  • 资助金额:
    $ 70.48万
  • 项目类别:
    Standard Grant
Improving identification and healthcare for patients with Inherited Cancer Syndromes: Evidence-based EMR implementation using a web-based computer platform
改善遗传性癌症综合征患者的识别和医疗保健:使用基于网络的计算机平台实施基于证据的 EMR
  • 批准号:
    10831647
  • 财政年份:
    2023
  • 资助金额:
    $ 70.48万
  • 项目类别:
CT imaging-based prediction and stratification of motor and cognitive behavior after stroke for targeted game-based robot therapy: Diversity Supplement
基于 CT 成像的中风后运动和认知行为的预测和分层,用于基于游戏的有针对性的机器人治疗:多样性补充
  • 批准号:
    10765218
  • 财政年份:
    2023
  • 资助金额:
    $ 70.48万
  • 项目类别:
Technology Core
技术核心
  • 批准号:
    10715742
  • 财政年份:
    2023
  • 资助金额:
    $ 70.48万
  • 项目类别:
ISimcha Technology Platform for Recruiting a Diverse Population of Older Adults into Clinical Trials
ISimcha 技术平台,用于招募不同的老年人群进行临床试验
  • 批准号:
    10761602
  • 财政年份:
    2023
  • 资助金额:
    $ 70.48万
  • 项目类别:
A scalable cloud-based framework for multi-modal mapping across single neuron omics, morphology and electrophysiology
一个可扩展的基于云的框架,用于跨单个神经元组学、形态学和电生理学的多模式映射
  • 批准号:
    10725550
  • 财政年份:
    2023
  • 资助金额:
    $ 70.48万
  • 项目类别:
HealthyU-Latinx: A Technology-based Tool for addressing Health Literacy in Latinx Secondary Students and their Families
HealthyU-Latinx:一种基于技术的工具,用于提高拉丁裔中学生及其家庭的健康素养
  • 批准号:
    10699830
  • 财政年份:
    2023
  • 资助金额:
    $ 70.48万
  • 项目类别:
Administrative Core
行政核心
  • 批准号:
    10713051
  • 财政年份:
    2023
  • 资助金额:
    $ 70.48万
  • 项目类别:
Nanoluciferase reporter phage for rapid phenotypic characterization of resistance to next-generation antimycobacterial agents
纳米荧光素酶报告噬菌体用于快速表征下一代抗分枝杆菌药物的耐药性
  • 批准号:
    10593796
  • 财政年份:
    2023
  • 资助金额:
    $ 70.48万
  • 项目类别:
Vesicle Epitope Transcript sequencing (VET-seq): Droplet-based Multiomic Profiling Platform for Single Vesicle Analysis
囊泡表位转录本测序 (VET-seq):用于单囊泡分析的基于液滴的多组学分析平台
  • 批准号:
    10613257
  • 财政年份:
    2023
  • 资助金额:
    $ 70.48万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了