Prediction and analysis of membrane protein structures and their interactions from genome data
根据基因组数据预测和分析膜蛋白结构及其相互作用
基本信息
- 批准号:BB/E022642/1
- 负责人:
- 金额:$ 35.94万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2007
- 资助国家:英国
- 起止时间:2007 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
About 30% of genes in the human genome code for proteins which are found in cell membranes. These proteins are responsible for maintaining many important processes in cells. Understanding the structure and function of these proteins and studying their properties and biochemical mechanisms are therefore among the most important goals in biological and pharmaceutical research. To understand membrane proteins, it is important to understand how their sequences and structures, and consequently their interactions, have adapted to the chemical and physical properties of biological membranes. With the advent of the structural genomics era, as membrane protein 3D structures are determined, bioinformatics studies are required to analyse and exploit this knowledge at the genome scale. Within this scenario, the main goals of our research project are to develop a pipeline (a closely linked set of computer programs) for the building of membrane protein 3D models at genome-scale and to develop new methods for the analysis and prediction of membrane protein interactions within the biological membrane. We will test our methods on membrane proteins which have experimental data available (e.g. where the number and orientation of transmembrane elements are known) and where possible where the atomic-level 3D structure is known. Currently there are few available resources fully dedicated to membrane proteins, but these do not provide all the information we need (they either contains only structural data or are limited to only few membrane protein classes). We will develop a structure-centric resource including all classes of known membrane protein structures and linking them to the corresponding available genome data. The next step will consist in analysing and classifying all of the transmembrane proteins for which 3D structures have been determined. Unlike existing classification schemes, we will derive a novel method specific for membrane protein classification that will integrate and exploit the existing schemes but develop a set of specific descriptions which will discriminate diverse membrane protein structures in biologically meaningful ways. We also plan to improve the current transmembrane topology prediction by developing a new suite of tools to predict transmembrane topology with increased accuracy combining multiple topological features, like amino acid topogenic propensities, topogenic motifs, sub-cellular location prediction of domains and prediction of signal peptides. We also plan to build a pipeline for building 3D models of membrane proteins across whole genomes. We will develop two different methods to assign membrane proteins to structural families (and build the corresponding 3D models). For sequences with clear similarity to a structural families, sequence profiles will be used for the assignment, while a 'fold recognition' method will be derived for sequences with weak sequence similarity. The interactions of membrane protein interactions with other molecules, i.e. peptides, proteins, lipids and small molecules will be studied to identify interactions for the functioning of specific families. We will analyse binding sites in transmembrane proteins using methods similar to those previously developed in the Thornton group to characterize binding sites in water-soluble proteins. These methods will need to be adapted, since we believe the membrane constraint strongly influences the way cognate partners interact making the interaction patterns peculiar. We will therefore explore the interactions between membrane protein and lipids and their importance for different biological functions and compartmentalisations exploiting the protein structural knowledge developed in our previous structural studies and all currently available resources.
人类基因组中约30%的基因编码细胞膜中发现的蛋白质。这些蛋白质负责维持细胞中的许多重要过程。因此,了解这些蛋白质的结构和功能并研究其性质和生化机制是生物学和药学研究中最重要的目标之一。为了了解膜蛋白,重要的是要了解它们的序列和结构,以及它们的相互作用如何适应生物膜的化学和物理性质。随着结构基因组学时代的到来,随着膜蛋白3D结构的确定,生物信息学研究需要在基因组尺度上分析和利用这些知识。在这种情况下,我们的研究项目的主要目标是开发一个管道(一组紧密相连的计算机程序),用于在基因组规模上构建膜蛋白3D模型,并开发新的方法来分析和预测生物膜内的膜蛋白相互作用。我们将在具有实验数据的膜蛋白上测试我们的方法(例如,已知跨膜元件的数量和方向),并且在可能的情况下,已知原子级3D结构。目前,几乎没有完全致力于膜蛋白的可用资源,但这些资源并不能提供我们需要的所有信息(它们要么只包含结构数据,要么仅限于少数膜蛋白类)。我们将开发一个以结构为中心的资源,包括所有类型的已知膜蛋白结构,并将它们与相应的可用基因组数据联系起来。下一步将包括分析和分类所有已确定3D结构的跨膜蛋白。与现有的分类方案不同,我们将推导出一种新的膜蛋白分类方法,该方法将整合和利用现有的方案,但开发出一套具体的描述,以生物学上有意义的方式区分不同的膜蛋白结构。我们还计划通过开发一套新的工具来预测跨膜拓扑结构,结合多种拓扑特征,如氨基酸拓扑倾向,拓扑基序,结构域的亚细胞位置预测和信号肽预测,提高跨膜拓扑结构的准确性,以改善目前的跨膜拓扑结构预测。我们还计划建立一个管道,用于在整个基因组中构建膜蛋白的3D模型。我们将开发两种不同的方法来分配膜蛋白的结构家族(并建立相应的3D模型)。对于与结构家族具有明显相似性的序列,将使用序列谱进行分配,而对于具有弱序列相似性的序列,将推导出“折叠识别”方法。将研究膜蛋白与其他分子(即肽、蛋白质、脂质和小分子)的相互作用,以确定特定家族功能的相互作用。我们将分析跨膜蛋白中的结合位点,使用类似于桑顿组先前开发的方法来表征水溶性蛋白中的结合位点。这些方法将需要适应,因为我们相信膜约束强烈影响同源合作伙伴的方式进行互动,使互动模式奇特。因此,我们将探索膜蛋白和脂质之间的相互作用,以及它们对不同生物功能和区室化的重要性,利用我们以前的结构研究和所有现有资源中开发的蛋白质结构知识。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mutations at key pore-lining positions differentiate the water permeability of fish lens aquaporin from other vertebrates.
关键孔衬位置的突变使鱼晶状体水通道蛋白的透水性与其他脊椎动物不同。
- DOI:10.1016/j.febslet.2010.10.058
- 发表时间:2010
- 期刊:
- 影响因子:3.5
- 作者:Calvanese L
- 通讯作者:Calvanese L
PoreWalker: a novel tool for the identification and characterization of channels in transmembrane proteins from their three-dimensional structure.
- DOI:10.1371/journal.pcbi.1000440
- 发表时间:2009-07
- 期刊:
- 影响因子:4.3
- 作者:Pellegrini-Calace M;Maiwald T;Thornton JM
- 通讯作者:Thornton JM
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Janet Thornton其他文献
Correction: Structural and Chemical Profiling of the Human Cytosolic Sulfotransferases
更正:人类胞质磺基转移酶的结构和化学分析
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:9.8
- 作者:
A. Allali;Wang Pan;L. Dombrovski;Rafi Najmanovich;W. Tempel;Aiping Dong;P. Loppnau;Fernando Martin;Janet Thornton;Aled M. Edwards;A. Bochkarev;Alexander Plotnikov;M. Vedadi;Cheryl Arrowsmith - 通讯作者:
Cheryl Arrowsmith
Minimum information about a bioactive entity (MIABE)
生物活性实体的最小信息(MIABE)
- DOI:
10.1038/nrd3503 - 发表时间:
2011-08-31 - 期刊:
- 影响因子:101.800
- 作者:
Sandra Orchard;Bissan Al-Lazikani;Steve Bryant;Dominic Clark;Elizabeth Calder;Ian Dix;Ola Engkvist;Mark Forster;Anna Gaulton;Michael Gilson;Robert Glen;Martin Grigorov;Kim Hammond-Kosack;Lee Harland;Andrew Hopkins;Christopher Larminie;Nick Lynch;Romeena K. Mann;Peter Murray-Rust;Elena Lo Piparo;Christopher Southan;Christoph Steinbeck;David Wishart;Henning Hermjakob;John Overington;Janet Thornton - 通讯作者:
Janet Thornton
Annotations for all by all - the BioSapiens network
- DOI:
10.1186/gb-2009-10-2-401 - 发表时间:
2009-01-01 - 期刊:
- 影响因子:9.400
- 作者:
Janet Thornton - 通讯作者:
Janet Thornton
Janet Thornton的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Janet Thornton', 18)}}的其他基金
Unlocking the chemical potential of plants: Predicting function from DNA sequence for complex enzyme superfamilies
释放植物的化学潜力:根据复杂酶超家族的 DNA 序列预测功能
- 批准号:
BB/V015540/1 - 财政年份:2022
- 资助金额:
$ 35.94万 - 项目类别:
Research Grant
Development and Dissemination of e-Protein: A distributed pipeline for annotation using GRID technology
e-Protein 的开发和传播:使用 GRID 技术进行注释的分布式管道
- 批准号:
BB/D524308/1 - 财政年份:2006
- 资助金额:
$ 35.94万 - 项目类别:
Research Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
利用全基因组关联分析和QTL-seq发掘花生白绢病抗性分子标记
- 批准号:31971981
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
基于SERS纳米标签和光子晶体的单细胞Western Blot定量分析技术研究
- 批准号:31900571
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
利用多个实验群体解析猪保幼带形成及其自然消褪的遗传机制
- 批准号:31972542
- 批准年份:2019
- 资助金额:57.0 万元
- 项目类别:面上项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
基于个体分析的投影式非线性非负张量分解在高维非结构化数据模式分析中的研究
- 批准号:61502059
- 批准年份:2015
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
多目标诉求下我国交通节能减排市场导向的政策组合选择研究
- 批准号:71473155
- 批准年份:2014
- 资助金额:60.0 万元
- 项目类别:面上项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于物质流分析的中国石油资源流动过程及碳效应研究
- 批准号:41101116
- 批准年份:2011
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Integrative prediction of seasonal influenza evolution by genotype, phenotype, and geography
通过基因型、表型和地理综合预测季节性流感演变
- 批准号:
9760537 - 财政年份:2019
- 资助金额:
$ 35.94万 - 项目类别:
Computational Tools for Protein Complex Structure Prediction from MS Data
根据 MS 数据预测蛋白质复杂结构的计算工具
- 批准号:
10441403 - 财政年份:2018
- 资助金额:
$ 35.94万 - 项目类别:
Computational Tools for Protein Complex Structure Prediction from MS Data
根据 MS 数据预测蛋白质复杂结构的计算工具
- 批准号:
10192753 - 财政年份:2018
- 资助金额:
$ 35.94万 - 项目类别:
Image analytics prediction of corneal keratoplasty failure
角膜移植术失败的图像分析预测
- 批准号:
9765316 - 财政年份:2018
- 资助金额:
$ 35.94万 - 项目类别:
Prediction and analysis of intrinsically disordered regions in membrane proteins
膜蛋白本质无序区域的预测和分析
- 批准号:
17F17050 - 财政年份:2017
- 资助金额:
$ 35.94万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Improving prediction of drug interactions mediated by time-dependent inhibitors
改进对时间依赖性抑制剂介导的药物相互作用的预测
- 批准号:
9199095 - 财政年份:2016
- 资助金额:
$ 35.94万 - 项目类别:
Comprehensive analysis and prediction of diffusional mobility of membrane proteins in living cells
活细胞膜蛋白扩散迁移率综合分析与预测
- 批准号:
15K14509 - 财政年份:2015
- 资助金额:
$ 35.94万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Analysis of CTCs for Early Prediction of Response to Treatment in RCC
分析 CTC 以早期预测 RCC 治疗反应
- 批准号:
8814773 - 财政年份:2014
- 资助金额:
$ 35.94万 - 项目类别:
Computational tools for the prediction of protein orientations on material surfac
用于预测材料表面蛋白质方向的计算工具
- 批准号:
8445083 - 财政年份:2013
- 资助金额:
$ 35.94万 - 项目类别:
Center for Critical Assessment of Structure Prediction
结构预测关键评估中心
- 批准号:
9274985 - 财政年份:2012
- 资助金额:
$ 35.94万 - 项目类别: