Optimized Signal Processing of Fetal MCG
胎儿 MCG 的优化信号处理
基本信息
- 批准号:8242810
- 负责人:
- 金额:$ 41.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-07-01 至 2013-03-31
- 项目状态:已结题
- 来源:
- 关键词:AdultAlgorithmsArrhythmiaCharacteristicsDataDetectionDiagnosticEdemaElectrophysiology (science)EvaluationFetal Heart RateFetusGestational AgeGoalsHeart RateHeart failureHigh-Risk PregnancyMethodsOutcomePatternResearchResolutionRiskSignal TransductionSolutionsSudden DeathTechniquesTechnologyUltrasonographybasecomputerized data processingcongenital heart disorderfetalheart rate variabilityheart rhythmhigh riskimprovedindependent component analysisparticlepatient populationspatiotemporalsuccesstool
项目摘要
DESCRIPTION (provided by applicant): While the number of diagnostic technologies available for adult applications continues to grow, there remains a paucity of technologies suitable for fetal evaluation. In particular, noninvasive assessment of fetal electrophysiology has not been routinely possible. In the last few years, however, we and other groups have demonstrated the efficacy of fetal magnetocardiography (fMCG) as a new method of evaluating fetal arrhythmia, including its ability to provide critical information unavailable from ultrasound. Building on this success, we propose here to develop techniques to further improve the signal resolution of fMCG and to extend its applicability to other patient populations, including fetuses with congenital heart disease and increased risk of heart failure and sudden death. The two main goals of the research are: 1) to improve the efficacy of fMCG as a diagnostic tool for fetal rhythm assessment by investigating new signal processing methods to increase the resolution of fMCG waveform components and the signal detection rate at early gestational ages. This will be accomplished by: "implementing independent component analysis (ICA) algorithms to separate the fetal signal from maternal and environmental interference " developing new methods of computing fetal heart rate tracings and estimating the spatiotemporal characteristics of the fMCG, based on the concept of particle filtering " utilizing ultrasound imaging to estimate an fMCG forward solution that can be used to develop a data- independent beamformer 2) to identify magnetophysiological markers associated with suboptimal outcome in fetuses with arrhythmia, congenital heart disease, hydrops, and other high-risk conditions. This will be accomplished by: developing techniques to improve the detection accuracy of T-wave abnormalities, including "microvolt-T-wave alternans" correlating ominous heart rate and rhythm patterns, such as T-wave alternans, PR- and ST-segment shifts, nonreactivity, and low heart rate variability, with outcome in various high-risk pregnancy conditions. The goals of the research are 1) to develop new techniques to improve the efficacy of fetal magnetocardiography as a diagnostic tool for assessment of fetuses with arrhythmia, congenital heart disease, hydrops, and other high-risk conditions, and 2) to identify magnetophysiological markers associated with suboptimal outcome and risk of sudden fetal demise.
描述(由申请人提供):虽然可用于成人应用的诊断技术数量持续增长,但适用于胎儿评估的技术仍然缺乏。特别是,胎儿电生理学的非侵入性评估还没有常规可能。然而,在过去的几年里,我们和其他研究小组已经证明了胎儿心磁图(fMCG)作为一种新的评估胎儿心律失常的方法的有效性,包括其提供超声无法提供的关键信息的能力。在此成功的基础上,我们建议开发技术,以进一步提高快速消费品的信号分辨率,并将其适用性扩展到其他患者人群,包括患有先天性心脏病和心力衰竭和猝死风险增加的胎儿。 本研究的两个主要目标是:1)通过研究新的信号处理方法来提高fMCG波形分量的分辨率和孕早期信号检测率,从而提高fMCG作为胎儿节律评估的诊断工具的功效。这将通过以下方式实现:“实施独立分量分析(伊卡)算法以将胎儿信号与母体和环境干扰分离“开发计算胎儿心率描记和估计fMCG的时空特征的新方法,基于粒子滤波的概念,“利用超声成像来估计fMCG正向解,其可用于开发数据无关波束形成器2)识别与患有心律失常、先天性心脏病、积水和其他高危疾病的胎儿的次优结局相关的磁生理标志物。这将通过以下方式实现:开发技术以提高T波异常的检测准确性,包括“微伏-T波交替”,其将不利的心率和节律模式(如T波交替、PR和ST段移位、无反应性和低心率变异性)与各种高危妊娠状况的结果相关联。该研究的目标是:1)开发新技术,以提高胎儿心磁图作为评估胎儿心律失常、先天性心脏病、水肿和其他高危疾病的诊断工具的有效性; 2)识别与次优结局和胎儿猝死风险相关的磁生理学标志物。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
RONALD T WAKAI其他文献
RONALD T WAKAI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('RONALD T WAKAI', 18)}}的其他基金
Optimized Measurement and Signal Processing of Fetal MCG
胎儿 MCG 的优化测量和信号处理
- 批准号:
6773872 - 财政年份:1999
- 资助金额:
$ 41.67万 - 项目类别:
Optimized Measurement and Signal Processing of Fetal MCG
胎儿 MCG 的优化测量和信号处理
- 批准号:
9975872 - 财政年份:1999
- 资助金额:
$ 41.67万 - 项目类别:
OPTIMIZED MEASUREMENT AND SIGNAL PROCESSING OF FETAL MCG
胎儿 MCG 的优化测量和信号处理
- 批准号:
6437226 - 财政年份:1999
- 资助金额:
$ 41.67万 - 项目类别:
Optimized Measurement and Signal Processing of Fetal MCG
胎儿 MCG 的优化测量和信号处理
- 批准号:
7090706 - 财政年份:1999
- 资助金额:
$ 41.67万 - 项目类别:
OPTIMIZED MEASUREMENT AND SIGNAL PROCESSING OF FETAL MCG
胎儿 MCG 的优化测量和信号处理
- 批准号:
2889756 - 财政年份:1999
- 资助金额:
$ 41.67万 - 项目类别:
Optimized Measurement and Signal Processing of Fetal MCG
胎儿 MCG 的优化测量和信号处理
- 批准号:
8857219 - 财政年份:1999
- 资助金额:
$ 41.67万 - 项目类别:
OPTIMIZED MEASUREMENT AND SIGNAL PROCESSING OF FETAL MCG
胎儿 MCG 的优化测量和信号处理
- 批准号:
6184990 - 财政年份:1999
- 资助金额:
$ 41.67万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 41.67万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 41.67万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 41.67万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 41.67万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 41.67万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 41.67万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 41.67万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 41.67万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 41.67万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 41.67万 - 项目类别:
Continuing Grant














{{item.name}}会员




