Trajectories/Predictors of Oral Health-Related Quality of Life to Early Adulthood

成年早期口腔健康相关生活质量的轨迹/预测因素

基本信息

  • 批准号:
    10673958
  • 负责人:
  • 金额:
    $ 15.59万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-01 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY/ABSTRACT Healthcare costs continue to grow exponentially in the United States and oral diseases remain one of the top 10 categories in terms of personal health care expenditures. To tackle the rising costs of care and minimize unnecessary treatment, there is increasing emphasis on patient-centered care, by including patient perceptions and health-related quality of life assessments as important health outcomes in medical and dental research. Oral health conditions have physical and psychological effects on individuals and influence their quality of life - how they grow, look, speak, chew, and socialize. Addressing Oral Health-Related Quality of Life (OHRQoL) is important and will help improve the quality of care, minimize oral health disparities, improve patient satisfaction and overall quality of life, and reduce costs. Despite the importance of OHRQoL, there have been few longitudinal and no trajectory studies of OHRQoL in adolescence/young adulthood. Ideally, such studies would identify longitudinal factors and patterns/trajectories to more fully understand development of OHRQoL as individuals enter adulthood. To adequately address the challenges of longitudinal data and create a predictive model capturing the many important trajectory determinants, it is necessary to use a high-performing algorithm like machine learning, a type of artificial intelligence. Our study will be the first to develop machine learning tools for prediction of OHRQoL using longitudinal data. We chose machine learning because it can accommodate the high-dimensional data to accurately predict individuals’ OHRQoL trajectories. We will leverage unique longitudinal data from our Iowa Fluoride Study, with data from subjects followed from birth to age 23 years. OHRQoL trajectories will be defined using three dependent variables measured at ages 17, 19, and 23: 1) Child Perception Questionnaire, 2) global oral health, and 3) visual analog quality of life scores. Due to the complexity and high dimensionality of the data, we will use unsupervised machine learning (K-means for longitudinal data) and supervised machine learning (LASSO regression, random forest and extreme gradient-boosting model) for the trajectory analysis and outcome predictions, respectively. The specific aims of the study will be to 1) determine the OHRQoL trajectories from late adolescence to young adulthood using unsupervised machine learning, and 2) identify predictors of trajectory group membership using supervised machine learning. The study will contribute significantly to our knowledge of adolescents’/young adults’ OHRQoL trajectories and determinants. The outcomes will set the stage for clinicians and policymakers to transition to a care model that is more patient-centered, which will improve oral health outcomes, reduce oral health disparities, reduce costs, and increase patient satisfaction. Our research will introduce and showcase the usefulness of machine learning in oral health research. Long term, we will develop a web-based application that clinicians and policymakers can use to better design interventions and treatments to suit the oral health needs of individuals and populations.
项目总结/文摘

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

STEVEN M. LEVY其他文献

STEVEN M. LEVY的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('STEVEN M. LEVY', 18)}}的其他基金

Trajectories/Predictors of Oral Health-Related Quality of Life to Early Adulthood
成年早期口腔健康相关生活质量的轨迹/预测因素
  • 批准号:
    10524262
  • 财政年份:
    2022
  • 资助金额:
    $ 15.59万
  • 项目类别:
Secondary Analyses of Adolescent Caries, Including Fluoride, Diet & Other Factors
青少年龋齿的二次分析,包括氟化物、饮食
  • 批准号:
    8612838
  • 财政年份:
    2014
  • 资助金额:
    $ 15.59万
  • 项目类别:
University of Iowa Institutional Training Program in Oral Health Research
爱荷华大学口腔健康研究机构培训计划
  • 批准号:
    10845790
  • 财政年份:
    2013
  • 资助金额:
    $ 15.59万
  • 项目类别:
University of Iowa Institutional Training Program in Oral Health Research
爱荷华大学口腔健康研究机构培训计划
  • 批准号:
    9264401
  • 财政年份:
    2013
  • 资助金额:
    $ 15.59万
  • 项目类别:
University of Iowa Institutional Training Program in Oral Health Research
爱荷华大学口腔健康研究机构培训计划
  • 批准号:
    10710934
  • 财政年份:
    2013
  • 资助金额:
    $ 15.59万
  • 项目类别:
IOWA FLUORIDE STUDY
爱荷华州氟化物研究
  • 批准号:
    7604934
  • 财政年份:
    2007
  • 资助金额:
    $ 15.59万
  • 项目类别:
IOWA FLUORIDE STUDY
爱荷华州氟化物研究
  • 批准号:
    7377099
  • 财政年份:
    2006
  • 资助金额:
    $ 15.59万
  • 项目类别:
IOWA FLUORIDE STUDY
爱荷华州氟化物研究
  • 批准号:
    7201399
  • 财政年份:
    2005
  • 资助金额:
    $ 15.59万
  • 项目类别:
Iowa Fluoride Study
爱荷华州氟化物研究
  • 批准号:
    7040845
  • 财政年份:
    2004
  • 资助金额:
    $ 15.59万
  • 项目类别:
IOWA FLUORIDE STUDY
爱荷华州氟化物研究
  • 批准号:
    6566532
  • 财政年份:
    2001
  • 资助金额:
    $ 15.59万
  • 项目类别:

相似海外基金

Identification of Prospective Predictors of Alcohol Initiation During Early Adolescence
青春期早期饮酒的前瞻性预测因素的鉴定
  • 批准号:
    10823917
  • 财政年份:
    2024
  • 资助金额:
    $ 15.59万
  • 项目类别:
Socio-Emotional Characteristics in Early Childhood and Offending Behaviour in Adolescence
幼儿期的社会情感特征和青春期的犯罪行为
  • 批准号:
    ES/Z502601/1
  • 财政年份:
    2024
  • 资助金额:
    $ 15.59万
  • 项目类别:
    Fellowship
Reasoning about Spatial Relations and Distributions: Supporting STEM Learning in Early Adolescence
空间关系和分布的推理:支持青春期早期的 STEM 学习
  • 批准号:
    2300937
  • 财政年份:
    2023
  • 资助金额:
    $ 15.59万
  • 项目类别:
    Continuing Grant
Cognitive and non-cognitive abilities and career development during adolescence and adult development: from the perspective of genetic and environmental structure
青春期和成人发展期间的认知和非认知能力与职业发展:从遗传和环境结构的角度
  • 批准号:
    23K02900
  • 财政年份:
    2023
  • 资助金额:
    $ 15.59万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Does social motivation in adolescence differentially predict the impact of childhood threat exposure on developing suicidal thoughts and behaviors
青春期的社会动机是否可以差异预测童年威胁暴露对自杀想法和行为的影响
  • 批准号:
    10785373
  • 财政年份:
    2023
  • 资助金额:
    $ 15.59万
  • 项目类别:
Mapping the Neurobiological Risks and Consequences of Alcohol Use in Adolescence and Across the Lifespan
绘制青春期和整个生命周期饮酒的神经生物学风险和后果
  • 批准号:
    10733406
  • 财政年份:
    2023
  • 资助金额:
    $ 15.59万
  • 项目类别:
Thalamo-prefrontal circuit maturation during adolescence
丘脑-前额叶回路在青春期成熟
  • 批准号:
    10585031
  • 财政年份:
    2023
  • 资助金额:
    $ 15.59万
  • 项目类别:
The Role of Sleep in the Relationships Among Adverse Childhood Experiences, Mental Health Symptoms, and Persistent/Recurrent Pain during Adolescence
睡眠在不良童年经历、心理健康症状和青春期持续/复发性疼痛之间关系中的作用
  • 批准号:
    10676403
  • 财政年份:
    2023
  • 资助金额:
    $ 15.59万
  • 项目类别:
Interdisciplinary Perspectives on the Politics of Adolescence and Democracy
青少年政治与民主的跨学科视角
  • 批准号:
    EP/X026825/1
  • 财政年份:
    2023
  • 资助金额:
    $ 15.59万
  • 项目类别:
    Research Grant
An Empirical Study on the Influence of Socioeconomic Status in Adolescence on Exercise Habits in Adulthood
青春期社会经济地位对成年期运动习惯影响的实证研究
  • 批准号:
    23K16734
  • 财政年份:
    2023
  • 资助金额:
    $ 15.59万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了