Trajectories/Predictors of Oral Health-Related Quality of Life to Early Adulthood
成年早期口腔健康相关生活质量的轨迹/预测因素
基本信息
- 批准号:10673958
- 负责人:
- 金额:$ 15.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdolescenceAdolescentAdolescent and Young AdultAdultAgeAlgorithmsArtificial IntelligenceBirthCaringCategoriesChildClient satisfactionCross-Sectional StudiesDataData AnalysesData ScientistDentalDental ResearchDental cariesDentistryDevelopmentDimensionsFluoridesFutureGoalsGrantHealthHealth Care CostsHealth ExpendituresHigh PrevalenceIndividualIowaLongitudinal StudiesMachine LearningMalocclusionMeasuresMedical Care CostsMedical ResearchMethodsModelingMouth DiseasesOdds RatioOral healthOutcomeParticipantPatient-Centered CarePatientsPatternPerceptionPolicy MakerPopulationPositioning AttributePublic HealthQuality of CareQuality of Life AssessmentQuality of lifeQuality-Adjusted Life YearsQuestionnairesResearchRisk FactorsSocializationSpecialistStatistical Data InterpretationStatistical ModelsStudy SubjectTimeUnited StatesVisualanalogcare costscostdata complexitydepressive symptomsemerging adultexperiencefluorosisgradient boostinghealth disparityhealth related quality of lifeimprovedinnovationmachine learning algorithmmachine learning modelmultidimensional dataoutcome predictionpatient orientedpredictive modelingpredictive toolsprogramspsychologicrandom forestsupervised learningtherapy designtoolunnecessary treatmentunsupervised learningweb appyoung adult
项目摘要
PROJECT SUMMARY/ABSTRACT
Healthcare costs continue to grow exponentially in the United States and oral diseases remain one of the top
10 categories in terms of personal health care expenditures. To tackle the rising costs of care and minimize
unnecessary treatment, there is increasing emphasis on patient-centered care, by including patient perceptions
and health-related quality of life assessments as important health outcomes in medical and dental research.
Oral health conditions have physical and psychological effects on individuals and influence their quality of life -
how they grow, look, speak, chew, and socialize. Addressing Oral Health-Related Quality of Life (OHRQoL) is
important and will help improve the quality of care, minimize oral health disparities, improve patient satisfaction
and overall quality of life, and reduce costs. Despite the importance of OHRQoL, there have been few
longitudinal and no trajectory studies of OHRQoL in adolescence/young adulthood. Ideally, such studies would
identify longitudinal factors and patterns/trajectories to more fully understand development of OHRQoL as
individuals enter adulthood. To adequately address the challenges of longitudinal data and create a predictive
model capturing the many important trajectory determinants, it is necessary to use a high-performing algorithm
like machine learning, a type of artificial intelligence. Our study will be the first to develop machine learning
tools for prediction of OHRQoL using longitudinal data. We chose machine learning because it can
accommodate the high-dimensional data to accurately predict individuals’ OHRQoL trajectories. We will
leverage unique longitudinal data from our Iowa Fluoride Study, with data from subjects followed from birth to
age 23 years. OHRQoL trajectories will be defined using three dependent variables measured at ages 17, 19,
and 23: 1) Child Perception Questionnaire, 2) global oral health, and 3) visual analog quality of life scores. Due
to the complexity and high dimensionality of the data, we will use unsupervised machine learning (K-means for
longitudinal data) and supervised machine learning (LASSO regression, random forest and extreme
gradient-boosting model) for the trajectory analysis and outcome predictions, respectively. The specific aims
of the study will be to 1) determine the OHRQoL trajectories from late adolescence to young adulthood using
unsupervised machine learning, and 2) identify predictors of trajectory group membership using supervised
machine learning. The study will contribute significantly to our knowledge of adolescents’/young adults’
OHRQoL trajectories and determinants. The outcomes will set the stage for clinicians and policymakers to
transition to a care model that is more patient-centered, which will improve oral health outcomes, reduce oral
health disparities, reduce costs, and increase patient satisfaction. Our research will introduce and showcase
the usefulness of machine learning in oral health research. Long term, we will develop a web-based application
that clinicians and policymakers can use to better design interventions and treatments to suit the oral health
needs of individuals and populations.
项目总结/摘要
在美国,医疗保健费用继续呈指数级增长,口腔疾病仍然是最主要的疾病之一。
10个类别的个人医疗保健支出。为了应对不断上涨的护理成本,
不必要的治疗,越来越强调以病人为中心的护理,包括病人的看法,
和健康相关的生活质量评估作为医学和牙科研究的重要健康结果。
口腔健康状况对个人的身体和心理有影响,并影响他们的生活质量-
它们如何生长,如何看,如何说话,如何咀嚼,如何社交。解决口腔健康相关的生活质量(OHRQoL)是
重要的是,将有助于提高护理质量,最大限度地减少口腔健康差异,提高患者满意度,
和整体生活质量,并降低成本。尽管OHRQoL的重要性,
青少年/青年期OHRQoL的纵向和无轨迹研究。理想情况下,这些研究将
确定纵向因素和模式/轨迹,以更全面地了解OHRQoL的发展,
个体进入成年期。充分应对纵向数据的挑战,并创建预测性
模型捕捉了许多重要的轨迹决定因素,因此有必要使用高性能算法
比如机器学习,一种人工智能。我们的研究将是第一个开发机器学习的
使用纵向数据预测OHRQoL的工具。我们选择机器学习是因为它可以
适应高维数据,以准确预测个人的OHRQoL轨迹。我们将
利用来自我们爱荷华州氟化物研究的独特纵向数据,
年龄23岁。OHRQoL轨迹将使用在17岁、19岁、18岁和19岁时测量的三个因变量定义,
和23:1)儿童感知问卷,2)整体口腔健康,和3)视觉模拟生活质量评分。由于
针对数据的复杂性和高维性,我们将使用无监督机器学习(K-means for
纵向数据)和监督机器学习(LASSO回归,随机森林和极端
梯度推进模型)分别用于轨迹分析和结果预测。具体目标
研究的目的是:1)使用以下方法确定从青春期后期到成年早期的OHRQoL轨迹
无监督机器学习,以及2)使用有监督机器学习来识别轨迹组成员资格的预测器。
机器学习这项研究将大大有助于我们对青少年的了解。
OHRQoL轨迹和决定因素。这些结果将为临床医生和政策制定者奠定基础,
过渡到一个更以病人为中心的护理模式,这将改善口腔健康的结果,减少口腔
健康差异,降低成本,提高患者满意度。我们的研究将介绍和展示
机器学习在口腔健康研究中的作用。从长远来看,我们将开发基于Web的应用程序
临床医生和政策制定者可以用来更好地设计干预和治疗,以适应口腔健康
个人和群体的需求。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
STEVEN M. LEVY其他文献
STEVEN M. LEVY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('STEVEN M. LEVY', 18)}}的其他基金
Trajectories/Predictors of Oral Health-Related Quality of Life to Early Adulthood
成年早期口腔健康相关生活质量的轨迹/预测因素
- 批准号:
10524262 - 财政年份:2022
- 资助金额:
$ 15.59万 - 项目类别:
Secondary Analyses of Adolescent Caries, Including Fluoride, Diet & Other Factors
青少年龋齿的二次分析,包括氟化物、饮食
- 批准号:
8612838 - 财政年份:2014
- 资助金额:
$ 15.59万 - 项目类别:
University of Iowa Institutional Training Program in Oral Health Research
爱荷华大学口腔健康研究机构培训计划
- 批准号:
10845790 - 财政年份:2013
- 资助金额:
$ 15.59万 - 项目类别:
University of Iowa Institutional Training Program in Oral Health Research
爱荷华大学口腔健康研究机构培训计划
- 批准号:
9264401 - 财政年份:2013
- 资助金额:
$ 15.59万 - 项目类别:
University of Iowa Institutional Training Program in Oral Health Research
爱荷华大学口腔健康研究机构培训计划
- 批准号:
10710934 - 财政年份:2013
- 资助金额:
$ 15.59万 - 项目类别:
相似海外基金
Identification of Prospective Predictors of Alcohol Initiation During Early Adolescence
青春期早期饮酒的前瞻性预测因素的鉴定
- 批准号:
10823917 - 财政年份:2024
- 资助金额:
$ 15.59万 - 项目类别:
Socio-Emotional Characteristics in Early Childhood and Offending Behaviour in Adolescence
幼儿期的社会情感特征和青春期的犯罪行为
- 批准号:
ES/Z502601/1 - 财政年份:2024
- 资助金额:
$ 15.59万 - 项目类别:
Fellowship
Cognitive and non-cognitive abilities and career development during adolescence and adult development: from the perspective of genetic and environmental structure
青春期和成人发展期间的认知和非认知能力与职业发展:从遗传和环境结构的角度
- 批准号:
23K02900 - 财政年份:2023
- 资助金额:
$ 15.59万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Reasoning about Spatial Relations and Distributions: Supporting STEM Learning in Early Adolescence
空间关系和分布的推理:支持青春期早期的 STEM 学习
- 批准号:
2300937 - 财政年份:2023
- 资助金额:
$ 15.59万 - 项目类别:
Continuing Grant
Does social motivation in adolescence differentially predict the impact of childhood threat exposure on developing suicidal thoughts and behaviors
青春期的社会动机是否可以差异预测童年威胁暴露对自杀想法和行为的影响
- 批准号:
10785373 - 财政年份:2023
- 资助金额:
$ 15.59万 - 项目类别:
Mapping the Neurobiological Risks and Consequences of Alcohol Use in Adolescence and Across the Lifespan
绘制青春期和整个生命周期饮酒的神经生物学风险和后果
- 批准号:
10733406 - 财政年份:2023
- 资助金额:
$ 15.59万 - 项目类别:
The Role of Sleep in the Relationships Among Adverse Childhood Experiences, Mental Health Symptoms, and Persistent/Recurrent Pain during Adolescence
睡眠在不良童年经历、心理健康症状和青春期持续/复发性疼痛之间关系中的作用
- 批准号:
10676403 - 财政年份:2023
- 资助金额:
$ 15.59万 - 项目类别:
Thalamo-prefrontal circuit maturation during adolescence
丘脑-前额叶回路在青春期成熟
- 批准号:
10585031 - 财政年份:2023
- 资助金额:
$ 15.59万 - 项目类别:
Interdisciplinary Perspectives on the Politics of Adolescence and Democracy
青少年政治与民主的跨学科视角
- 批准号:
EP/X026825/1 - 财政年份:2023
- 资助金额:
$ 15.59万 - 项目类别:
Research Grant
An Empirical Study on the Influence of Socioeconomic Status in Adolescence on Exercise Habits in Adulthood
青春期社会经济地位对成年期运动习惯影响的实证研究
- 批准号:
23K16734 - 财政年份:2023
- 资助金额:
$ 15.59万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




