Role and Regulation of Skeletal Muscle Mitochondrial Dynamics in Type 2 Diabetes
骨骼肌线粒体动力学在 2 型糖尿病中的作用和调节
基本信息
- 批准号:9336293
- 负责人:
- 金额:$ 69.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-30 至 2018-04-01
- 项目状态:已结题
- 来源:
- 关键词:AcuteAttenuatedBioenergeticsBiopsyCell modelClosure by clampDataDiabetes MellitusDictyostelium discoideum dynamin ADiseaseDynaminEuglycemic ClampingEventExerciseFatty acid glycerol estersFunctional disorderFuture GenerationsGenus HippocampusHigh Pressure Liquid ChromatographyHumanHydrogen PeroxideImpairmentIn VitroIndirect CalorimetryInfusion proceduresInsulinInsulin ResistanceLeadLinkLipidsMeasuresMembraneMembrane PotentialsMetabolismMitochondriaMolecularMuscleMuscle CellsMuscle FibersNon obeseNon-Insulin-Dependent Diabetes MellitusNonesterified Fatty AcidsNutrientOPA1 geneObesityOrganellesPINK1 genePathway interactionsPatientsPeripheralPhosphorylationPhysiologicalPrediabetes syndromeProcessProductionProtein IsoformsProteinsReactive Oxygen SpeciesRecruitment ActivityRegulationResearchReticulumRoleSkeletal MuscleStaining methodStainsStructureTestingThinnessTissuesbasediabetes mellitus therapyevidence baseexercise trainingexperimental studyexpression cloningglucose metabolismglucose uptakehuman diseasein vivoinnovationinsightinsulin sensitivityinsulin signalingknock-downlipid metabolismmanmetabolic phenotypemitochondrial membranemitochondrial permeability transition porenon-diabeticnovelnovel therapeuticsoxidationprospectiveprotein expressionpublic health relevancesmall hairpin RNAtooltransmission processvolunteer
项目摘要
DESCRIPTION (provided by applicant): The traditional view of mitochondria as isolated, spherical, energy producing organelles is undergoing a revolutionary transformation. Emerging data show that mitochondria form a dynamic networked reticulum that is regulated by cycles of fission and fusion. The discovery of a number of proteins that regulate these activities has led to
important advances in understanding human disease. We have demonstrated that activation of dynamin related protein 1 (Drp1), a protein that controls mitochondrial fission, is reduced following exercise in prediabetes, and the decrease is linked to increased insulin sensitivity and fat oxidation. We now propose to build on this research and test the hypothesis that mitochondrial dynamics is a key mechanism of insulin resistance in type 2 diabetes. Our central hypothesis is that in diabetes elevated mitochondrial lipid metabolism causes recruitment and activation of Drp1 - likely through increased reactive oxygen species, leading to increased mitochondrial fragmentation and opening of the mitochondrial permeability transition pore. In Aim 1a we will perform in vivo and in vitro studies of human skeletal muscle mitochondrial dynamics across the metabolic phenotype ranging from patients with type 2 diabetes, to obese, to lean healthy controls. Translational first-in-man studies will use an acute lipid challenge (Aim
1b) and exercise training (Aim 1c) to investigate the physiological significance of altered skeleta muscle mitochondrial dynamics on insulin sensitivity in humans. Insulin resistance will be assessed using euglycemic hyperinsulinemic clamps, and in vivo substrate metabolism will be measured using indirect calorimetry. Mitochondrial fission/fusion, fragmentation, function, membrane potential, mitochondrial reactive oxygen species, and the accumulation of lipid intermediates will be assessed from muscle biopsy tissue and permeabilized muscle fibers. In Aim 2, we will use inhibition and expression cloning experiments to directly examine the impact of manipulating mitochondrial fragmentation in intact ex vivo cultured human skeletal muscle cells. This research will provide a comprehensive and complementary analysis of skeletal muscle mitochondrial dynamics, and will also generate novel data on the link between exercise and nutrient regulation of mitochondrial dynamics and function in type 2 diabetes. The experimental approach harnesses innovative molecular and cellular tools, interfaced with physiologically significant human studies to obtain meaningful data on insulin resistance, and has the potential to generate insights that will lead to new diabetes therapies for future generations.
描述(由申请人提供):线粒体作为孤立的、球形的、产生能量的细胞器的传统观点正在经历革命性的转变。新出现的数据表明,线粒体形成一个动态的网状结构,受裂变和融合周期的调节。许多调节这些活动的蛋白质的发现导致了
在了解人类疾病方面取得了重大进展。我们已经证明,发动蛋白相关蛋白1(Drp 1),一种控制线粒体分裂的蛋白质,在糖尿病前期运动后活化减少,这种减少与胰岛素敏感性增加和脂肪氧化有关。我们现在建议在这项研究的基础上,验证线粒体动力学是2型糖尿病胰岛素抵抗的关键机制这一假设。我们的中心假设是,在糖尿病中,线粒体脂质代谢升高导致Drp 1的募集和激活-可能是通过增加活性氧,导致线粒体碎片化增加和线粒体渗透性转换孔的开放。在目标1a中,我们将在体内和体外研究人类骨骼肌线粒体动力学的代谢表型,从2型糖尿病患者,肥胖,瘦健康对照。转化性首次人体研究将使用急性脂质挑战(Aim
1b)和运动训练(目的1c),以研究人类骨骼肌线粒体动力学改变对胰岛素敏感性的生理意义。将使用正常血糖高胰岛素钳夹评估胰岛素抵抗,并使用间接量热法测量体内底物代谢。将从肌肉活检组织和透化肌纤维中评估线粒体分裂/融合、断裂、功能、膜电位、线粒体活性氧和脂质中间体蓄积。在目标2中,我们将使用抑制和表达克隆实验来直接检查在完整的离体培养的人骨骼肌细胞中操纵线粒体片段化的影响。这项研究将提供骨骼肌线粒体动力学的全面和补充分析,并将产生关于运动与营养调节2型糖尿病线粒体动力学和功能之间联系的新数据。该实验方法利用创新的分子和细胞工具,与生理学上重要的人类研究相结合,以获得有关胰岛素抵抗的有意义的数据,并有可能产生见解,为后代带来新的糖尿病治疗方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JOHN P. KIRWAN其他文献
JOHN P. KIRWAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JOHN P. KIRWAN', 18)}}的其他基金
Louisiana Clinical and Translational Science Center
路易斯安那州临床和转化科学中心
- 批准号:
10415589 - 财政年份:2021
- 资助金额:
$ 69.84万 - 项目类别:
Louisiana Clinical and Translational Science Center
路易斯安那州临床和转化科学中心
- 批准号:
10258534 - 财政年份:2020
- 资助金额:
$ 69.84万 - 项目类别:
Role and Regulation of Skeletal Muscle Mitochondrial Dynamics in Type 2 Diabetes
骨骼肌线粒体动力学在 2 型糖尿病中的作用和调节
- 批准号:
9767119 - 财政年份:2015
- 资助金额:
$ 69.84万 - 项目类别:
Role of the skeletal muscle/pancreatic axis in type 2 diabetes
骨骼肌/胰轴在 2 型糖尿病中的作用
- 批准号:
9014518 - 财政年份:2015
- 资助金额:
$ 69.84万 - 项目类别:
Role of the skeletal muscle/pancreatic axis in type 2 diabetes
骨骼肌/胰轴在 2 型糖尿病中的作用
- 批准号:
8815628 - 财政年份:2015
- 资助金额:
$ 69.84万 - 项目类别:
Louisiana Clinical and Translational Science Center - N3C supplement
路易斯安那临床和转化科学中心 - N3C 补充品
- 批准号:
10884657 - 财政年份:2012
- 资助金额:
$ 69.84万 - 项目类别:
Health Disparities and SARS-COV-2 Evolution: A Focused Viral Genomics Study
健康差异和 SARS-COV-2 进化:一项重点病毒基因组学研究
- 批准号:
10381371 - 财政年份:2012
- 资助金额:
$ 69.84万 - 项目类别:
Louisiana Clinical and Translational Science Center
路易斯安那州临床和转化科学中心
- 批准号:
10513330 - 财政年份:2012
- 资助金额:
$ 69.84万 - 项目类别:
Louisiana Clinical and Translational Science Center
路易斯安那州临床和转化科学中心
- 批准号:
10677678 - 财政年份:2012
- 资助金额:
$ 69.84万 - 项目类别:
相似海外基金
A platform for rapidly generating live attenuated enterovirus vaccines
快速生成减毒肠道病毒活疫苗的平台
- 批准号:
24K02286 - 财政年份:2024
- 资助金额:
$ 69.84万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
I-Corps: Translation potential of an efficient method to generate live-attenuated and replication-defective DNA viruses for vaccine development
I-Corps:一种有效方法的转化潜力,可生成用于疫苗开发的减毒活病毒和复制缺陷型 DNA 病毒
- 批准号:
2420924 - 财政年份:2024
- 资助金额:
$ 69.84万 - 项目类别:
Standard Grant
Developing a robust native extracellular matrix to improve islet function with attenuated immunogenicity for transplantation
开发强大的天然细胞外基质,以改善胰岛功能,并减弱移植的免疫原性
- 批准号:
10596047 - 财政年份:2023
- 资助金额:
$ 69.84万 - 项目类别:
Live attenuated non-transmissible (LANT) Klebsiella pneumoniae vaccines
肺炎克雷伯氏菌减毒非传染性 (LANT) 活疫苗
- 批准号:
10742028 - 财政年份:2023
- 资助金额:
$ 69.84万 - 项目类别:
Protecting Pigs From Enzootic Pneumonia: Rational Design Of Safe Attenuated Vaccines.
保护猪免受地方性肺炎:安全减毒疫苗的合理设计。
- 批准号:
BB/X017540/1 - 财政年份:2023
- 资助金额:
$ 69.84万 - 项目类别:
Research Grant
A “Goldilocks” live attenuated poultry vaccine for Infectious Coryza
用于传染性鼻炎的“Goldilocks”家禽减毒活疫苗
- 批准号:
LP210301365 - 财政年份:2023
- 资助金额:
$ 69.84万 - 项目类别:
Linkage Projects
A novel live-attenuated Zika vaccine with a modified 5'UTR
一种带有改良 5UTR 的新型寨卡减毒活疫苗
- 批准号:
10730832 - 财政年份:2023
- 资助金额:
$ 69.84万 - 项目类别:
Combating melanoma with an attenuated bacterial therapeutic
用减毒细菌疗法对抗黑色素瘤
- 批准号:
10659841 - 财政年份:2023
- 资助金额:
$ 69.84万 - 项目类别:
Investigating Host and Viral Factors for Improved Design of Future Live Attenuated Vaccines for IBV
研究宿主和病毒因素以改进未来 IBV 减毒活疫苗的设计
- 批准号:
BB/V016067/1 - 财政年份:2022
- 资助金额:
$ 69.84万 - 项目类别:
Research Grant
L2M NSERC-Bioengineering attenuated Sclerotinia sclerotiorum strains as bioherbicide for cereal production and lawn management
L2M NSERC-生物工程减毒核盘菌菌株作为谷物生产和草坪管理的生物除草剂
- 批准号:
576545-2022 - 财政年份:2022
- 资助金额:
$ 69.84万 - 项目类别:
Idea to Innovation