Personalized Networks and Sensor Technology Algorithms of Eating Disorder Symptoms Predicting Eating Disorder Outcomes
个性化网络和传感器技术饮食失调症状的算法预测饮食失调的结果
基本信息
- 批准号:10044077
- 负责人:
- 金额:$ 46.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-15 至 2023-06-14
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAccelerometerAddressAdultAffectAffectiveAlgorithmsAnorexia NervosaAnxietyBehaviorBehavior DisordersBehavioralBehavioral SymptomsBinge EatingBulimiaCellular PhoneChronicClinicalCognitionCognitiveCognitive TherapyDataData CollectionDevelopmentDiagnosisDisease remissionEating DisordersEpilepsyEvidence based treatmentFrightFutureGoalsGoldHealth PersonnelHeart RateIndividualIndividual DifferencesInterruptionInterventionLeadMachine LearningMaintenanceMental disordersMethodsModelingOutcomePathway AnalysisPathway interactionsPatient Self-ReportPatientsPatternPersonsPhysiologicalPhysiologyPrecision Medicine InitiativeProceduresPsychiatryPsychopathologyPsychotherapyRecoveryRelapseResearchScienceSeizuresSignal TransductionStructureSymptomsSystemTechniquesTechnologyTestingTimeUnited States National Institutes of HealthVariantWeight GainWorkbaseeffective therapyfollow-upfood restrictioninnovationmobile computingmortalitynoveloutcome forecastpersonalized interventionpersonalized medicineprediction algorithmpreventpsychologicpublic health relevancepurgerecruitresponsesensorsensor technologysevere mental illnesssmartphone Applicationstandard caretargeted treatmenttheoriestreatment planningwearable sensor technology
项目摘要
PROJECT SUMMARY/ABSTRACT
Eating disorders (EDs) are severe mental illnesses with the highest mortality rate of any
psychiatric disorder. The most widely used empirically supported treatment for EDs (cognitive
behavior therapy) is only efficacious for ~50% of individuals. This low response rate is due to
the fact that EDs are heterogeneous conditions with diverse symptom trajectories that are not
adequately addressed in current “one-size-fits-all” psychotherapies. Until we can identify what
maintains or exacerbates individual symptoms, clinicians will continue to have difficulty
accurately predicting prognosis and will have no empirical guidance to develop targeted
treatment plans to promote recovery. Our scientific premise, developed from our past work, is
that the application of network theory will enable the identification of cognitive-behavioral
symptom networks that maintain and ‘trigger’ EDs both between and within individuals. Our
study goals are to (1) identify individual ED ‘trigger’ symptoms (cognitions, behaviors, affect,
and physiology) and (2) correlate trigger symptoms with real-time physiological data to create
an algorithm predicting onset of ED behaviors. These goals will ultimately identify symptoms
that prevent full remission and lead to relapse. We will use a multiple units of analysis approach
combined with novel, cutting-edge advances in network science. We will collect intensive real-
time data on cognitions, behavior, affect, and physiology using mobile and sensor-technology
from 120 individuals with a diagnosis of anorexia nervosa (AN), atypical AN, and bulimia
nervosa across 30 days. At 1-month and 6-month follow ups we will assess ED outcomes (e.g.,
remission status, ED behaviors) to test if ‘trigger’ symptoms predict ED outcomes. Network
science and state-of-the-art machine learning techniques will allow us, for the first time, to
discover whether certain trigger symptoms predict worse outcomes. Specific aims are to (1)
develop personalized networks to identify which cognitive, behavioral, affective, and
physiological symptoms maintain EDs and predict ED outcomes and (2) utilize sensor data to
identify physiological patterns both within and across people that correlate with core maintaining
symptoms and that predict ED behaviors. The proposed research uses highly innovative
methods, combining intensive longitudinal data collection methods, all remote procedures, novel
advances in network science and sensor-technology, and state-of-the-art machine learning
techniques to answer previously unresolvable questions pinpointing which personalized
symptoms trigger EDs. The proposed research has clinical impact. If we identify patterns that
contribute to symptom network variation within individuals, these data will provide a model of
personalized medicine for the entire field of psychiatry, as well as providing novel intervention
targets to prevent and treat EDs.
项目摘要/摘要
饮食失调(EDs)是死亡率最高的严重精神疾病。
精神障碍。最广泛使用的经验性支持的EDS治疗(认知
行为疗法)只对50%的人有效。这一低应答率是由于
事实上,ED是具有不同症状轨迹的异质性疾病,而不是
在目前的“一刀切”心理疗法中得到了充分的解决。直到我们能确定
维持或加剧个别症状,临床医生将继续存在困难
准确预测预后,将没有经验指导制定有针对性的
治疗计划是为了促进康复。我们从过去的工作中发展出来的科学前提是
网络理论的应用将使认知行为的识别成为可能
维持和“触发”个体之间和个体内部的ED的症状网络。我们的
研究目标是:(1)确定个体的ED‘触发’症状(认知、行为、情感、
和生理)和(2)将触发症状与实时生理数据相关联以创建
一种预测ED行为开始的算法。这些目标最终将识别症状
这会阻止完全缓解并导致复发。我们将使用多单元分析方法
与网络科学中新颖、前沿的进步相结合。我们将收集密集的真实-
使用移动和传感器技术获得认知、行为、情感和生理方面的时间数据
来自120名被诊断为神经性厌食症、不典型神经性厌食症和暴食症的人
神经官能症持续30天。在1个月和6个月的随访中,我们将评估ED的结果(例如,
缓解状态、勃起功能障碍行为),以测试“触发”症状是否预示着勃起功能障碍的结果。网络
科学和最先进的机器学习技术将使我们第一次能够
发现某些触发症状是否预示着更糟糕的结果。具体目标是(1)
开发个性化网络,以确定哪些认知、行为、情感和
生理症状维持ED并预测ED结果,以及(2)利用传感器数据
确定与核心维护相关的人内和人之间的生理模式
症状和预测勃起功能障碍的行为。拟议的研究使用了高度创新的
方法,结合集约化纵向数据采集方法,全远程操作,新颖
网络科学和传感器技术的进步,以及最先进的机器学习
回答以前无法解决的问题的技术,以确定哪些个性化
症状会引发急救。这项拟议的研究具有临床影响。如果我们识别出
有助于个体内的症状网络变化,这些数据将提供一个模型
为整个精神病学领域提供个性化医学,以及提供新的干预
预防和治疗EDS的目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cheri Alicia Levinson其他文献
Cheri Alicia Levinson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cheri Alicia Levinson', 18)}}的其他基金
Longitudinal Personalized Dynamics Among Anorexia Nervosa Symptoms, Core Dimensions, and Physiology Predicting Suicide Risk
神经性厌食症症状、核心维度和预测自杀风险的生理学之间的纵向个性化动态
- 批准号:
10731597 - 财政年份:2023
- 资助金额:
$ 46.32万 - 项目类别:
Personalized Networks and Sensor Technology Algorithms of Eating Disorder Symptoms Predicting Eating Disorder Outcomes
个性化网络和传感器技术饮食失调症状的算法预测饮食失调的结果
- 批准号:
10652078 - 财政年份:2023
- 资助金额:
$ 46.32万 - 项目类别:
Innovations in Personalizing Treatment for Eating Disorders Using Idiographic Methods and the Impact of Personalization on Psychological, Physical, and Sociodemographic Outcomes
使用具体方法对饮食失调进行个性化治疗的创新以及个性化对心理、身体和社会人口学结果的影响
- 批准号:
10685796 - 财政年份:2023
- 资助金额:
$ 46.32万 - 项目类别:
Facing Eating Disorder Fears for Anorexia Nervosa: A Virtual Relapse Prevention Program Targeted at Approach and Avoidance Behaviors
面对饮食失调对神经性厌食症的恐惧:针对接近和回避行为的虚拟复发预防计划
- 批准号:
10425019 - 财政年份:2022
- 资助金额:
$ 46.32万 - 项目类别:
Facing Eating Disorder Fears for Anorexia Nervosa: A Virtual Relapse Prevention Program Targeted at Approach and Avoidance Behaviors
面对饮食失调对神经性厌食症的恐惧:针对接近和回避行为的虚拟复发预防计划
- 批准号:
10611448 - 财政年份:2022
- 资助金额:
$ 46.32万 - 项目类别:
A Pilot Investigation of Network-Informed Personalized Treatment for Eating Disorders versus Enhanced Cognitive Behavioral Therapy and Dynamic Mechanisms of Change
饮食失调的网络信息个性化治疗与增强认知行为疗法和动态变化机制的试点研究
- 批准号:
10612256 - 财政年份:2022
- 资助金额:
$ 46.32万 - 项目类别:
A Pilot Randomized Control Trial of a Relapse Prevention Online Exposure Protocol for Eating Disorders and Mechanisms of Change
针对饮食失调和变化机制的复发预防在线暴露协议的试点随机对照试验
- 批准号:
10579874 - 财政年份:2021
- 资助金额:
$ 46.32万 - 项目类别:
A Pilot Randomized Control Trial of a Relapse Prevention Online Exposure Protocol for Eating Disorders and Mechanisms of Change
针对饮食失调和变化机制的复发预防在线暴露协议的试点随机对照试验
- 批准号:
10372099 - 财政年份:2021
- 资助金额:
$ 46.32万 - 项目类别:
A Pilot Investigation of Network-Informed Personalized Treatment for Eating Disorders versus Enhanced Cognitive Behavioral Therapy and Dynamic Mechanisms of Change
饮食失调的网络信息个性化治疗与增强认知行为疗法和动态变化机制的试点研究
- 批准号:
10542414 - 财政年份:2021
- 资助金额:
$ 46.32万 - 项目类别:
A Pilot Investigation of Network-Informed Personalized Treatment for Eating Disorders versus Enhanced Cognitive Behavioral Therapy and Dynamic Mechanisms of Change
饮食失调的网络信息个性化治疗与增强认知行为疗法和动态变化机制的试点研究
- 批准号:
10347759 - 财政年份:2021
- 资助金额:
$ 46.32万 - 项目类别:
相似海外基金
Establishing best practices for the use of accelerometer measured ambient light sensor data to assess children's outdoor time
建立使用加速度计测量的环境光传感器数据来评估儿童的户外时间的最佳实践
- 批准号:
10731315 - 财政年份:2023
- 资助金额:
$ 46.32万 - 项目类别:
Training of machine learning algorithms for the classification of accelerometer-measured bednet use and related behaviors associated with malaria risk
训练机器学习算法,用于对加速计测量的蚊帐使用和与疟疾风险相关的相关行为进行分类
- 批准号:
10727374 - 财政年份:2023
- 资助金额:
$ 46.32万 - 项目类别:
Development of environmentally robust and thermally stable Microelectromechanical Systems (MEMS) based accelerometer for automotive applications
开发适用于汽车应用的环境稳定且热稳定的微机电系统 (MEMS) 加速度计
- 批准号:
566730-2021 - 财政年份:2022
- 资助金额:
$ 46.32万 - 项目类别:
Alliance Grants
Use of accelerometer and gyroscope data to improve precision of estimates of physical activity type and energy expenditure in free-living adults
使用加速度计和陀螺仪数据来提高自由生活成年人身体活动类型和能量消耗的估计精度
- 批准号:
10444075 - 财政年份:2022
- 资助金额:
$ 46.32万 - 项目类别:
Use of accelerometer and gyroscope data to improve precision of estimates of physical activity type and energy expenditure in free-living adults
使用加速度计和陀螺仪数据来提高自由生活成年人身体活动类型和能量消耗的估计精度
- 批准号:
10617774 - 财政年份:2022
- 资助金额:
$ 46.32万 - 项目类别:
Investigating the validity and reliability of accelerometer-based measures of physical activity and sedentary time in toddlers (iPLAY)
研究基于加速度计的幼儿体力活动和久坐时间测量的有效性和可靠性 (iPLAY)
- 批准号:
475451 - 财政年份:2022
- 资助金额:
$ 46.32万 - 项目类别:
Studentship Programs
Exploration of novel pathophysiology of chemotherapy-induced peripheral neuropathy utilizing quantitative sensory testing and accelerometer
利用定量感觉测试和加速度计探索化疗引起的周围神经病变的新病理生理学
- 批准号:
22K17623 - 财政年份:2022
- 资助金额:
$ 46.32万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Investigating the reliability of accelerometer-based measures of physical activity and sedentary time in toddlers
研究基于加速度计的幼儿体力活动和久坐时间测量的可靠性
- 批准号:
466914 - 财政年份:2021
- 资助金额:
$ 46.32万 - 项目类别:
Studentship Programs
Doctoral Dissertation Research: Leveraging Intensive Time Series of Accelerometer Data to Assess Impulsivity and Inattention in Preschool Children
博士论文研究:利用加速计数据的密集时间序列来评估学龄前儿童的冲动和注意力不集中
- 批准号:
2120223 - 财政年份:2021
- 资助金额:
$ 46.32万 - 项目类别:
Standard Grant
Development of a rotation-invariant accelerometer for human activity recognition
开发用于人类活动识别的旋转不变加速度计
- 批准号:
21K19804 - 财政年份:2021
- 资助金额:
$ 46.32万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)