Defining the conformational control of nitric oxide synthases by a multipronged approach
通过多管齐下的方法定义一氧化氮合酶的构象控制
基本信息
- 批准号:10621327
- 负责人:
- 金额:$ 31.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:Alzheimer&aposs DiseaseAnabolismArchitectureBackBehaviorBindingBiochemicalCalmodulinComplexComputer AnalysisComputer ModelsDependenceDeuteriumDevelopmentDiseaseDockingElectron Spin Resonance SpectroscopyElectron TransportElectronsEnzymesFamilyFlavin MononucleotideFree EnergyGenetic CodeHealthHeartHemeHemeproteinsHumanHydrogenKineticsKnowledgeMass Spectrum AnalysisMeasurementMethodsMolecularMolecular ConformationMotionNOS3 geneNeuronsNitric OxideNitric Oxide SynthaseOutputPhosphorylationPhosphoserinePhysiologic pulsePost-Translational RegulationProductionPropertyProtein ConformationProtein DynamicsProtein IsoformsProteinsRegulationResearchShapesSiteSpectrum AnalysisStimulusStrokeStructureSystemTechniquesTestingWorkcomputational basiseffective therapyexperimental studyflexibilityimprovedin vivoinnovationmilligramnovel therapeutic interventionnovel therapeuticsprogramsrate of changeresponsesingle-molecule FRETstatisticssynergismtwo-dimensional
项目摘要
Project Summary
The neuronal & endothelial nitric oxide (NO) synthase (nNOS & eNOS) enzymes make NO in response to
calmodulin (CaM) binding, and function broadly in human health and disease. Posttranslational regulation
through phosphorylation further regulates NOS in vivo in response to stimuli. Hallmarks of these large flavo-
hemoproteins include multi-domain architecture with flexible linkers, allowing for dynamic, regulated
interdomain electron transfer (IET). NO synthesis requires a large conformational change, in which the FMN
domain shuttles between NOS's electron-accepting “input state” and electron-donating “output state” to deliver
electrons across the domains. These large-scale motions are shaped by conformational energy landscape, i.e.,
the dependence of free energy on protein conformation. Moreover, local conformational adjustment likely
continues in the docked state. Despite extensive research efforts, the dynamics underlying these
conformational changes required for IET across the NOS domains remain unclear. A roadblock to answering
this central question is the lack of a unified theoretical/computational approach to interpret the experimental
results quantitatively. Solving this vexing research problem calls for a convergence of mesoscopic
computational analysis and hands-on experiments that are sensitive to NOS protein dynamics in solution.
Combining these latest experimental methods in a multipronged effort is innovative, as it dramatically expands
the overall scope of the experimental measurements and provides a better basis for the computations. This
approach will allow us to interpret the diverse experimental results and apply them to the calculated NOS
conformational behavior paradigm in a consistent manner. Our integrated program draws on the unique
combined expertise of the collaborative team. Importantly, we have made the crucial first step of implementing
our experimental and computational approaches synergistically.
To determine the energy landscape and the resulting NOS conformational properties, we will first calculate the
conformational statistics and dynamics and use it in synergy with the suitable experiments to study long-range
tethered domain motions in various NOS proteins. Furthermore, we will investigate local conformational
adjustments in the docked state. We will then apply our integrated approach to study remodeling of the
conformational landscape by functionally important phosphorylation. Taken together, these results will provide
a comprehensive quantitative understanding of protein dynamics as a central part of NOS mechanisms. The
proposed research is significant as it will answer long-standing fundamental questions about the NOS isoforms
by defining the conformational aspects (statistics, dynamics, and energy landscape) that govern the obligatory
electron transfer steps in NOS. This work will positively impact our understanding of other biomolecules as
defining structure-dynamics-function relationship lies at the heart of current biochemical research.
项目摘要
神经元和内皮一氧化氮(NO)合酶(nNOS和eNOS)酶使NO响应于
钙调蛋白(CaM)结合,并在人类健康和疾病中广泛发挥作用。翻译后调节
通过磷酸化进一步调节NOS在体内对刺激的反应。这些大口味的标志-
血红素蛋白包括具有柔性接头的多结构域结构,允许动态的、受调节的
畴间电子转移(IET)。NO合成需要大的构象变化,其中FMN
域之间穿梭NOS的电子接受“输入状态”和电子捐赠“输出状态”,以提供
电子穿过域。这些大规模的运动是由构象能量景观塑造的,即,
自由能对蛋白质构象的依赖性。此外,局部构象调整可能
继续处于对接状态。尽管进行了广泛的研究,但这些研究背后的动力学
跨NOS结构域的IET所需的构象变化仍不清楚。回答问题的障碍
这个中心问题是缺乏一个统一的理论/计算方法来解释实验
定量的结果。解决这个令人烦恼的研究问题需要一个介观的收敛
计算分析和动手实验,是敏感的NOS蛋白质动力学的解决方案。
将这些最新的实验方法结合在一起,多管齐下,这是一种创新,
实验测量的整体范围,并提供了一个更好的基础计算。这
方法将使我们能够解释不同的实验结果,并将其应用于计算的NOS
以一致的方式进行构象行为范式。我们的综合方案借鉴了独特的
合作团队的专业知识。重要的是,我们已经迈出了关键的第一步,
我们的实验和计算方法的协同作用。
为了确定能量分布和由此产生的NOS构象性质,我们将首先计算能量分布。
构象统计学和动力学,并将其与合适的实验协同使用,以研究长程
各种NOS蛋白质中的栓系结构域运动。此外,我们将研究局部构象
对接状态下的调整。然后,我们将应用我们的综合方法来研究重塑的
构象景观的功能重要的磷酸化。综合起来,这些结果将提供
蛋白质动力学作为NOS机制的核心部分的全面定量理解。的
一项拟议中的研究意义重大,因为它将回答有关NOS亚型的长期存在的基本问题
通过定义支配强制性的构象方面(统计、动力学和能量景观)
电子转移步骤NOS。这项工作将积极影响我们对其他生物分子的理解,
定义结构-动力学-功能关系是当前生物化学研究的核心。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Interdomain Interactions Modulate the Active Site Dynamics of Human Inducible Nitric Oxide Synthase.
- DOI:10.1021/acs.jpcb.2c04091
- 发表时间:2022-09-15
- 期刊:
- 影响因子:3.3
- 作者:Tumbic, Goran W.;Li, Jinghui;Jiang, Ting;Hossan, Md Yeathad;Feng, Changjian;Thielges, Megan C.
- 通讯作者:Thielges, Megan C.
An isoform-specific pivot modulates the electron transfer between the flavin mononucleotide and heme centers in inducible nitric oxide synthase.
- DOI:10.1007/s00775-020-01824-w
- 发表时间:2020-12
- 期刊:
- 影响因子:0
- 作者:Zheng H;Li J;Feng C
- 通讯作者:Feng C
Probing Protein Dynamics in Neuronal Nitric Oxide Synthase by Quantitative Cross-Linking Mass Spectrometry.
- DOI:10.1021/acs.biochem.3c00245
- 发表时间:2023-08-01
- 期刊:
- 影响因子:2.9
- 作者:Jiang, Ting;Wan, Guanghua;Zhang, Haikun;Gyawali, Yadav Prasad;Underbakke, Eric S.;Feng, Changjian
- 通讯作者:Feng, Changjian
Heat shock protein 90α increases superoxide generation from neuronal nitric oxide synthases.
- DOI:10.1016/j.jinorgbio.2020.111298
- 发表时间:2021-01
- 期刊:
- 影响因子:3.9
- 作者:Zheng H;Weaver JM;Feng C
- 通讯作者:Feng C
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Changjian Feng其他文献
Changjian Feng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Changjian Feng', 18)}}的其他基金
RapifleX MALDI-TOF/TOF Mass Spectrometer
RapifleX MALDI-TOF/TOF 质谱仪
- 批准号:
10630621 - 财政年份:2023
- 资助金额:
$ 31.42万 - 项目类别:
Defining the conformational control of nitric oxide synthases by a multipronged approach
通过多管齐下的方法定义一氧化氮合酶的构象控制
- 批准号:
10218215 - 财政年份:2020
- 资助金额:
$ 31.42万 - 项目类别:
Defining the conformational control of nitric oxide synthases by a multipronged approach
通过多管齐下的方法定义一氧化氮合酶的构象控制
- 批准号:
10571224 - 财政年份:2020
- 资助金额:
$ 31.42万 - 项目类别:
Defining the conformational control of nitric oxide synthases by a multipronged approach
通过多管齐下的方法定义一氧化氮合酶的构象控制
- 批准号:
10404575 - 财政年份:2020
- 资助金额:
$ 31.42万 - 项目类别:
Defining the conformational control of nitric oxide synthases by a multipronged approach
通过多管齐下的方法定义一氧化氮合酶的构象控制
- 批准号:
10385652 - 财政年份:2020
- 资助金额:
$ 31.42万 - 项目类别:
相似国自然基金
新型F-18标记香豆素衍生物PET探针的研制及靶向Alzheimer's Disease 斑块显像研究
- 批准号:81000622
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
阿尔茨海默病(Alzheimer's disease,AD)动物模型构建的分子机理研究
- 批准号:31060293
- 批准年份:2010
- 资助金额:26.0 万元
- 项目类别:地区科学基金项目
跨膜转运蛋白21(TMP21)对引起阿尔茨海默病(Alzheimer'S Disease)的γ分泌酶的作用研究
- 批准号:30960334
- 批准年份:2009
- 资助金额:22.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Pathophysiological mechanisms of hypoperfusion in mouse models of Alzheimer?s disease and small vessel disease
阿尔茨海默病和小血管疾病小鼠模型低灌注的病理生理机制
- 批准号:
10657993 - 财政年份:2023
- 资助金额:
$ 31.42万 - 项目类别:
Social Connectedness and Communication in Parents with Huntington''s Disease and their Offspring: Associations with Psychological and Disease Progression
患有亨廷顿病的父母及其后代的社会联系和沟通:与心理和疾病进展的关联
- 批准号:
10381163 - 财政年份:2022
- 资助金额:
$ 31.42万 - 项目类别:
The Role of Menopause-Driven DNA Damage and Epigenetic Dysregulation in Alzheimer s Disease
更年期驱动的 DNA 损伤和表观遗传失调在阿尔茨海默病中的作用
- 批准号:
10531959 - 财政年份:2022
- 资助金额:
$ 31.42万 - 项目类别:
The Role of Menopause-Driven DNA Damage and Epigenetic Dysregulation in Alzheimer s Disease
更年期驱动的 DNA 损伤和表观遗传失调在阿尔茨海默病中的作用
- 批准号:
10700991 - 财政年份:2022
- 资助金额:
$ 31.42万 - 项目类别:
Interneurons as early drivers of Huntington´s disease progression
中间神经元是亨廷顿病进展的早期驱动因素
- 批准号:
10518582 - 财政年份:2022
- 资助金额:
$ 31.42万 - 项目类别:
Interneurons as Early Drivers of Huntington´s Disease Progression
中间神经元是亨廷顿病进展的早期驱动因素
- 批准号:
10672973 - 财政年份:2022
- 资助金额:
$ 31.42万 - 项目类别:
Social Connectedness and Communication in Parents with Huntington''s Disease and their Offspring: Associations with Psychological and Disease Progression
患有亨廷顿病的父母及其后代的社会联系和沟通:与心理和疾病进展的关联
- 批准号:
10585925 - 财政年份:2022
- 资助金额:
$ 31.42万 - 项目类别:
Oligodendrocyte heterogeneity in Alzheimer' s disease
阿尔茨海默病中的少突胶质细胞异质性
- 批准号:
10180000 - 财政年份:2021
- 资助金额:
$ 31.42万 - 项目类别:
Serum proteome analysis of Alzheimer´s disease in a population-based longitudinal cohort study - the AGES Reykjavik study
基于人群的纵向队列研究中阿尔茨海默病的血清蛋白质组分析 - AGES 雷克雅未克研究
- 批准号:
10049426 - 财政年份:2021
- 资助金额:
$ 31.42万 - 项目类别:
Repurposing drugs for Alzheimer´s disease using a reverse translational approach
使用逆翻译方法重新利用治疗阿尔茨海默病的药物
- 批准号:
10295809 - 财政年份:2021
- 资助金额:
$ 31.42万 - 项目类别: