The Mechanistic Control of Bone Matrix Material Properties by TGF-beta and Runx2

TGF-beta 和 Runx2 对骨基质材料特性的机械控制

基本信息

项目摘要

DESCRIPTION (provided by applicant): Bone matrix is an organic and mineral composite that confers toughness and hardness to bone. The material properties of this matrix may predict bone fracture risk and could complement clinical fracture risk assessment, which currently relies on bone mineral density. Matrix material properties, like other aspects of bone quality, are biologically determined and anatomically distinct. However, little is known about their regulation in healthy bone or their misregulation in disease. The long-term goal of this research is to identify mechanisms that control matrix material properties, so that ultimately, they can be harnessed therapeutically to prevent skeletal disease and improve craniofacial bone repair. Transforming growth factor-¿ (TGF-¿) was recently identified as the first growth factor to regulate bone matrix material properties. TGF-¿ inhibits osteoblast gene expression and differentiation, as well as bone matrix material properties, by repressing the function of Runx2, a key osteoblast transcription factor. Although Runx2 integrates signals from many pathways, only TGF-¿ and glucocorticoids have yet been shown to regulate matrix material properties. Therefore, this proposal aims to investigate cellular and molecular mechanisms by which TGF-¿ and Runx2 regulate matrix material properties. Osteoblasts are required for the regulation of matrix material properties by TGF-¿. Whether osteoblasts modify matrix material properties directly, or indirectly by cooperating with osteoclasts to change bone remodeling activity remains unclear. Using genetic and pharmacologic tools to manipulate osteoclast and osteoblast function in mice, Aim 1 seeks to determine the relative roles of both cell types in the specification of matrix material properties. Bone matrix material properties and mineral concentration will be evaluated by nanoindentation, fracture toughness testing, and X-ray tomographic microscopy. TGF-¿ can repress or activate the expression of Runx2, apparently by differential utilization of downstream signaling pathways. Since the level of Runx2 function affects matrix material properties, Aim 2 seeks to identify mechanisms by which TGF-¿ signaling regulates Runx2 to control osteoblast differentiation and matrix material properties. Novel mouse models and in vitro systems will be used. Furthermore, the targets of TGF-¿ and Runx2 action that result in altered matrix material properties remain to be determined. Several TGF-¿ and Runx2-regulated gene products have the potential to affect matrix material properties, including non-collagenous bone matrix proteins, proteases, and other signaling molecules. Aim 3 seeks to identify essential downstream targets through which TGF-¿ and Runx2 regulate matrix material properties, using a combination of in vivo and in vitro approaches. Overall, the proposed studies seek to test the hypothesis that TGF-¿ utilizes Smad3 and non-Smad3 mechanisms to differentially control Runx2 activation of osteoblast genes, which in turn establish matrix material properties both directly, and indirectly through the regulation of osteoclast-mediated bone remodeling. This research will elucidate the role of bone matrix material properties in skeletal health and disease. PUBLIC HEALTH RELEVANCE: Relevance Research into the mechanisms that control the bone matrix quality will lead to strategies to prevent skeletal disease and improve skeletal tissue repair, specifically craniofacial bones and perhaps teeth. This project will investigate two specific factors (TGF-¿ and Runx2) that participate in the regulation of bone matrix quality. This will lead to a closer examination of their regulation in healthy bone or their misregulation during disease processes.
描述(申请人提供):骨基质是一种有机和矿物复合材料,赋予骨骼韧性和硬度。这种基质的材料特性可以预测骨折风险,并可以补充目前依赖于骨密度的临床骨折风险评估。基质材料的特性,就像骨质量的其他方面一样,是由生物决定的,在解剖学上是不同的。然而,人们对它们在健康骨骼中的调控或在疾病中的错误调控知之甚少。这项研究的长期目标是确定控制基质材料性能的机制,以便最终能够在治疗上利用它们来预防骨骼疾病和改善颅面骨修复。近年来,转化生长因子被认为是第一个调节骨基质材料性能的生长因子。转化生长因子β通过抑制成骨细胞转录因子Runx2的功能,抑制成骨细胞基因的表达和分化,以及骨基质材料的特性。尽管Runx2整合了许多途径的信号,但只有转化生长因子-β和糖皮质激素被证明调节基质材料的性质。因此,本研究旨在研究转化生长因子β和Runx2调节基质材料性质的细胞和分子机制。成骨细胞是通过转化生长因子-β调节基质材料性质所必需的。成骨细胞是直接改变基质材料的性质,还是通过与破骨细胞合作改变骨重建活性来间接改变基质材料的性质尚不清楚。使用遗传学和药理学工具来操纵小鼠的破骨细胞和成骨细胞功能,Aim 1试图确定这两种细胞类型在基质材料特性规范中的相对作用。骨基质材料的性能和矿物质浓度将通过纳米压痕、断裂韧性测试和X射线断层显微镜进行评估。转化生长因子β可抑制或激活Runx2的表达,其机制明显是通过对下游信号通路的差异化利用。由于Runx2功能水平影响基质材料特性,Aim 2试图确定转化生长因子β信号调节Runx2以控制成骨细胞分化和基质材料特性的机制。将使用新的小鼠模型和体外系统。此外,导致基质材料性质改变的转化生长因子β和Runx2作用的靶点仍有待确定。一些受转化生长因子β和Runx2调控的基因产物有可能影响基质材料的特性,包括非胶原性骨基质蛋白、蛋白酶和其他信号分子。目的3采用体内和体外相结合的方法,试图确定重要的下游靶点,通过这些靶点,转化生长因子β和Runx2调节基质材料的性质。总之,建议的研究试图验证这样的假设,即转化生长因子β利用SMAD3和非SMAD3机制来不同地控制成骨细胞基因的Runx2激活,这反过来又直接和间接地通过调节破骨细胞介导的骨重建来建立基质材料的特性。这项研究将阐明骨基质材料特性在骨骼健康和疾病中的作用。公共卫生相关性:对控制骨基质质量的机制的相关性研究将导致预防骨骼疾病和改善骨骼组织修复的策略,特别是头面部骨骼,也许还有牙齿。本项目将研究参与骨基质质量调节的两个特定因子(转化生长因子β和Runx2)。这将导致对它们在健康骨骼中的调节或在疾病过程中的错误调节进行更仔细的检查。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tamara N Alliston其他文献

Tamara N Alliston的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tamara N Alliston', 18)}}的其他基金

Osteocyte-dependent mechanisms of bone cartilage crosstalk in osteoarthritis
骨关节炎中骨软骨串扰的骨细胞依赖性机制
  • 批准号:
    10727267
  • 财政年份:
    2023
  • 资助金额:
    $ 38.23万
  • 项目类别:
UCSF Musculoskeletal Training Program
加州大学旧金山分校肌肉骨骼训练计划
  • 批准号:
    10625232
  • 财政年份:
    2023
  • 资助金额:
    $ 38.23万
  • 项目类别:
The mechanistic control of bone quality and joint crosstalk by osteocytes
骨细胞对骨质量和关节串扰的机械控制
  • 批准号:
    10605074
  • 财政年份:
    2022
  • 资助金额:
    $ 38.23万
  • 项目类别:
Core Center for Musculoskeletal Biology and Medicine (Overall Application)
肌肉骨骼生物学与医学核心中心(整体应用)
  • 批准号:
    10642787
  • 财政年份:
    2019
  • 资助金额:
    $ 38.23万
  • 项目类别:
Skeletal Biology and Biomechanics (SBB) Core
骨骼生物学和生物力学 (SBB) 核心
  • 批准号:
    10215391
  • 财政年份:
    2019
  • 资助金额:
    $ 38.23万
  • 项目类别:
Core Center for Musculoskeletal Biology and Medicine (Overall Application)
肌肉骨骼生物学与医学核心中心(整体应用)
  • 批准号:
    10707598
  • 财政年份:
    2019
  • 资助金额:
    $ 38.23万
  • 项目类别:
Skeletal Biology and Biomechanics (SBB) Core
骨骼生物学和生物力学 (SBB) 核心
  • 批准号:
    10642797
  • 财政年份:
    2019
  • 资助金额:
    $ 38.23万
  • 项目类别:
Core Center for Musculoskeletal Biology and Medicine (Overall Application)
肌肉骨骼生物学与医学核心中心(整体应用)
  • 批准号:
    10460468
  • 财政年份:
    2019
  • 资助金额:
    $ 38.23万
  • 项目类别:
Skeletal Biology and Biomechanics (SBB) Core
骨骼生物学和生物力学 (SBB) 核心
  • 批准号:
    10460472
  • 财政年份:
    2019
  • 资助金额:
    $ 38.23万
  • 项目类别:
Core Center for Musculoskeletal Biology and Medicine (Overall Application)
肌肉骨骼生物学与医学核心中心(整体应用)
  • 批准号:
    10215386
  • 财政年份:
    2019
  • 资助金额:
    $ 38.23万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 38.23万
  • 项目类别:
    Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 38.23万
  • 项目类别:
    Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 38.23万
  • 项目类别:
    Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 38.23万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 38.23万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 38.23万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 38.23万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 38.23万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 38.23万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 38.23万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了