Dynamics of partial differential equations

偏微分方程的动力学

基本信息

  • 批准号:
    261892-2007
  • 负责人:
  • 金额:
    $ 1.09万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2007
  • 资助国家:
    加拿大
  • 起止时间:
    2007-01-01 至 2008-12-31
  • 项目状态:
    已结题

项目摘要

Complex spatial and temporal dynamics and pattern formation are ubiquitous features of spatially extended nonlinear dynamical systems modeled by partial differential equations (PDEs), with applications in physics, chemistry and biology.  Such systems frequently feature the nonlinear interactions of many unstable degrees of freedom, complicated dynamics over a range of scales, energy cascades, and chaos in space and time.    For most nonlinear, high-dimensional systems of interest, such as the celebrated problem of fluid turbulence, a detailed analytical understanding remains well beyond reach.  Nevertheless, even then one can sometimes obtain mathematically rigorous estimates for bulk properties.  The Rayleigh-Benard problem of a fluid layer heated from below attracts attention for its mathematical richness and its diversity of applications. For the problem of estimating bulk heat transport through the fluid in terms of the temperature drop across the boundaries, I have recently derived a reformulation for the realistic case of boundaries of finite conductivity.  My discovery that in the limit of large temperature difference, one should assume the boundaries to be insulating rather than conducting, has considerable implications which I propose to address.    The main theme of my proposal is the study of model one-dimensional PDEs displaying spatiotemporally complex and chaotic behaviour, with the goal of obtaining insights relevant to more realistic higher- dimensional problems.  In particular, I seek to identify the relevant statistics to measure, and to clarify potentially universal properties of spatiotemporal chaos.  My approach is to have careful analysis - including rigorous estimates on averaged quantities - suggest appropriate numerical investigations, and vice versa, to obtain a detailed scale-by-scale understanding of the dynamics.    The systems I am currently studying include a model for pattern formation with mean flow: the observed separation of scales and anomalous scaling seem to indicate a new type of spatiotemporal chaos.  A related model has recently found exciting applications to crystal growth and the formation of suncup patterns in snow.
复杂时空动力学和模式形成是偏微分方程(PDE)空间扩展非线性动力学系统的普遍特征,在物理、化学和生物学中有着广泛的应用,这类系统通常具有多个不稳定自由度的非线性相互作用、多个尺度上的复杂动力学、能量级联和时空混沌等特征. 对于大多数的非线性、高维系统,如著名的流体湍流问题,详细的解析解仍然遥不可及。然而,即使这样,有时也可以得到对整体性质的数学严格估计。从下面加热的流体层的Rayleigh-Benard问题因其数学上的丰富性和应用的多样性而引起人们的注意。对于问题的估计散装热输运通过流体中的温度下降的边界,我最近推导出一个reformulation为现实情况下的边界的有限conductivity. My发现,在大温差的限制,应该假设的边界是绝缘的,而不是进行,有相当大的影响,我建议解决。 我的建议的主题是研究模型一维偏微分方程的时空复杂性和混沌行为,目标是获得与更现实的高维问题相关的见解。特别是,我试图确定相关的统计数据来测量,并阐明时空混沌潜在的普遍性质。我的方法是仔细分析-包括对平均数量的严格估计-建议进行适当的数值研究,反之亦然,以获得对动态的详细的逐尺度理解。 我目前正在研究的系统包括一个平均流模式形成的模型:观测到的尺度分离和异常尺度似乎表明了一种新型的时空混沌,一个相关的模型最近在晶体生长和雪中的太阳杯模式形成方面找到了令人兴奋的应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wittenberg, Ralf其他文献

Wittenberg, Ralf的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wittenberg, Ralf', 18)}}的其他基金

Evolution equations displaying complex spatiotemporal behaviour
显示复杂时空行为的演化方程
  • 批准号:
    RGPIN-2014-06691
  • 财政年份:
    2018
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Evolution equations displaying complex spatiotemporal behaviour
显示复杂时空行为的演化方程
  • 批准号:
    RGPIN-2014-06691
  • 财政年份:
    2017
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Evolution equations displaying complex spatiotemporal behaviour
显示复杂时空行为的演化方程
  • 批准号:
    RGPIN-2014-06691
  • 财政年份:
    2016
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Evolution equations displaying complex spatiotemporal behaviour
显示复杂时空行为的演化方程
  • 批准号:
    RGPIN-2014-06691
  • 财政年份:
    2015
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Evolution equations displaying complex spatiotemporal behaviour
显示复杂时空行为的演化方程
  • 批准号:
    RGPIN-2014-06691
  • 财政年份:
    2014
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Dynamics of partial differential equations
偏微分方程的动力学
  • 批准号:
    261892-2007
  • 财政年份:
    2011
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Dynamics of partial differential equations
偏微分方程的动力学
  • 批准号:
    261892-2007
  • 财政年份:
    2010
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Dynamics of partial differential equations
偏微分方程的动力学
  • 批准号:
    261892-2007
  • 财政年份:
    2009
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Dynamics of partial differential equations
偏微分方程的动力学
  • 批准号:
    261892-2007
  • 财政年份:
    2008
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Investigation of spatiotemporal chaos
时空混沌研究
  • 批准号:
    261892-2003
  • 财政年份:
    2006
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Graphon mean field games with partial observation and application to failure detection in distributed systems
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
硝态氮氨化菌群富集及其与部分反硝化协同的机制研究
  • 批准号:
    51808045
  • 批准年份:
    2018
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
Partial EIV 模型参数估计理论及其在测量数据处理中的应用研究
  • 批准号:
    41664001
  • 批准年份:
    2016
  • 资助金额:
    40.0 万元
  • 项目类别:
    地区科学基金项目
Partial Spread Bent函数与Bent-Negabent函数的构造及密码学性质研究
  • 批准号:
    61402377
  • 批准年份:
    2014
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
图的l1-嵌入性以及partial立方图和多重median图的刻画
  • 批准号:
    11261019
  • 批准年份:
    2012
  • 资助金额:
    45.0 万元
  • 项目类别:
    地区科学基金项目
微分动力系统的测度和熵
  • 批准号:
    11101447
  • 批准年份:
    2011
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
部分双曲系统的遍历性研究
  • 批准号:
    11001284
  • 批准年份:
    2010
  • 资助金额:
    16.0 万元
  • 项目类别:
    青年科学基金项目
低温绝缘材料局部放电特性与电老化机理的研究
  • 批准号:
    50577038
  • 批准年份:
    2005
  • 资助金额:
    27.0 万元
  • 项目类别:
    面上项目

相似海外基金

Partial differential equation: Schrodinger operator and long-time dynamics
偏微分方程:薛定谔算子和长期动力学
  • 批准号:
    FT230100588
  • 财政年份:
    2024
  • 资助金额:
    $ 1.09万
  • 项目类别:
    ARC Future Fellowships
Multi-soliton Dynamics for Dispersive Partial Differential Equations
色散偏微分方程的多孤子动力学
  • 批准号:
    2247290
  • 财政年份:
    2023
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Standard Grant
CAREER: Nonlocal partial differential equations in collective dynamics and fluid flow
职业:集体动力学和流体流动中的非局部偏微分方程
  • 批准号:
    2238219
  • 财政年份:
    2023
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Continuing Grant
Dynamics of Partial Differential Equations: Topological Implications for Stability and Analysis in Higher Spatial Dimensions
偏微分方程的动力学:更高空间维度稳定性和分析的拓扑含义
  • 批准号:
    2205434
  • 财政年份:
    2022
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Standard Grant
Collaborative Research: Nonlinear Dynamics and Spectral Analysis in Dispersive Partial Differential Equations
合作研究:色散偏微分方程中的非线性动力学和谱分析
  • 批准号:
    2055130
  • 财政年份:
    2021
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Standard Grant
Analysis of Nonlinear Partial Differential Equations in Free Boundary Fluid Dynamics, Mathematical Biology, and Kinetic Theory
自由边界流体动力学、数学生物学和运动理论中的非线性偏微分方程分析
  • 批准号:
    2055271
  • 财政年份:
    2021
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Standard Grant
Collaborative Research: Nonlinear Dynamics and Spectral Analysis in Dispersive Partial Differential Equations
合作研究:色散偏微分方程中的非线性动力学和谱分析
  • 批准号:
    2055072
  • 财政年份:
    2021
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Standard Grant
CAREER: New Mechanisms for Stability, Regularity and Long Time Dynamics of Partial Differential Equations
职业:偏微分方程稳定性、正则性和长期动力学的新机制
  • 批准号:
    1945179
  • 财政年份:
    2020
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Continuing Grant
CAREER: Dynamics of Nonlinear Dispersive Partial Differential Equations
职业:非线性色散偏微分方程的动力学
  • 批准号:
    1945615
  • 财政年份:
    2020
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Continuing Grant
Analysis of dispersive effects for partial differential equations appeared in the geophysical fluid dynamics
地球物理流体动力学中偏微分方程的色散效应分析
  • 批准号:
    20J20941
  • 财政年份:
    2020
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了