Levy processes and related problems
征费流程及相关问题
基本信息
- 批准号:249554-2006
- 负责人:
- 金额:$ 1.09万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2008
- 资助国家:加拿大
- 起止时间:2008-01-01 至 2009-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Levy processes are stochastic processes with independent and stationary increments. The best known examples are Brownian motion and the compound Poisson processes. For such processes, a rich mathematics theory has been developed, and extensive applications have been found in queuing theory, risk theory for insurance, mathematical finance and the genealogical structures of continuous state branching processes. One objective of this project is to study the properties concerning the extremes of Levy processes and related processes. One of the questions we are interested in is to understand how such a process first exits from an interval. We are also interested in the range time, the local time, and the excursions for these processes. As an application, the above-mentioned work enables us to introduce a novel risk model in which we can dynamically adjust its premium rate. This model is a compromise between the classical risk model and the risk model with barrier. It is more realistic while still mathematically tractable. Some explicit results on the ruin problem can be obtained. The other objective is to explore several measure-valued stochastic processes in which Levy processes are deeply involved. Such processes include the superprocess with Levy branching, the superprocess with coalescing Levy spatial motion, and the stepping-stone model undergoing levy migration. This project will contribute to the fluctuation theory for stochastic processes, in particular, for Levy processes. It will bring in new models and new techniques, such as excursion theory, to the study of risk theory. It will also lead to a better understanding and possible solutions to some challenging problems on measure-valued processes.
Levy过程是具有独立平稳增量的随机过程。最著名的例子是布朗运动和复合泊松过程。对于这类过程,已经发展了丰富的数学理论,并在排队论、保险风险理论、数理金融学以及连续状态分支过程的谱系结构等方面得到了广泛的应用。本项目的一个目的是研究Levy过程及其相关过程的极值性质。我们感兴趣的问题之一是理解这样一个过程是如何从一个区间中首先退出的。我们还对这些过程的范围时间、当地时间和漂移感兴趣。作为一个应用,上述工作使我们能够引入一个新的风险模型,我们可以动态地调整其保费费率。该模型是经典风险模型和带障碍风险模型之间的折衷。它更现实,同时在数学上仍然容易处理。得到了破产问题的一些显式结果。另一个目标是探讨几个测度值随机过程,其中Levy过程是深入参与。这类过程包括Levy分支超过程、Levy空间运动合并超过程和Levy迁移的垫脚石模型。这个项目将有助于随机过程的波动理论,特别是Levy过程。它将为风险理论的研究带来新的模型和新的技术,如漂移理论。这也将导致更好地理解和可能的解决方案,一些具有挑战性的问题上的测度值过程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhou, Xiaowen其他文献
Metal and F dual-doping to synchronously improve electron transport rate and lifetime for TiO2 photoanode to enhance dye-sensitized solar cells performances
金属和F双掺杂可同步提高TiO2光阳极的电子传输速率和寿命,从而增强染料敏化太阳能电池的性能
- DOI:
10.1039/c4ta07068b - 发表时间:
2015-02 - 期刊:
- 影响因子:11.9
- 作者:
Fang, Yanyan;Zhou, Xiaowen;Lin, Yuan;Pan, Feng - 通讯作者:
Pan, Feng
A Novel Magnetic Contrast Agent for Gastrointestinal Mucosa-Targeted Imaging Through Oral Administration
- DOI:
10.1166/jbn.2019.2771 - 发表时间:
2019-06-01 - 期刊:
- 影响因子:2.9
- 作者:
Cheng, Jiejun;Zhou, Xiaowen;Xu, Jianrong - 通讯作者:
Xu, Jianrong
Branching particle systems in spectrally one-sided L,vy processes
光谱单侧 L,vy 过程中的分支粒子系统
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
He, Hui;Li, Zenghu;Zhou, Xiaowen - 通讯作者:
Zhou, Xiaowen
Emerging Applications of Deep Learning in Bone Tumors: Current Advances and Challenges.
深度学习在骨肿瘤中的新兴应用:当前进展和挑战
- DOI:
10.3389/fonc.2022.908873 - 发表时间:
2022 - 期刊:
- 影响因子:4.7
- 作者:
Zhou, Xiaowen;Wang, Hua;Feng, Chengyao;Xu, Ruilin;He, Yu;Li, Lan;Tu, Chao - 通讯作者:
Tu, Chao
Stochastic generalized Burgers equations driven by fractional noises
分数噪声驱动的随机广义 Burgers 方程
- DOI:
10.1016/j.jde.2011.07.032 - 发表时间:
2012-01-15 - 期刊:
- 影响因子:2.4
- 作者:
Jiang, Yiming;Wei, Tingting;Zhou, Xiaowen - 通讯作者:
Zhou, Xiaowen
Zhou, Xiaowen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhou, Xiaowen', 18)}}的其他基金
Stochastic Interacting Population Dynamics and Related Problems
随机相互作用的种群动态及相关问题
- 批准号:
RGPIN-2021-04100 - 财政年份:2022
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Stochastic Interacting Population Dynamics and Related Problems
随机相互作用的种群动态及相关问题
- 批准号:
RGPIN-2021-04100 - 财政年份:2021
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Generalized Superprocesses
广义超级过程
- 批准号:
RGPIN-2016-06704 - 财政年份:2020
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Generalized Superprocesses
广义超级过程
- 批准号:
RGPIN-2016-06704 - 财政年份:2019
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Generalized Superprocesses
广义超级过程
- 批准号:
RGPIN-2016-06704 - 财政年份:2018
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Generalized Superprocesses
广义超级过程
- 批准号:
RGPIN-2016-06704 - 财政年份:2017
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Generalized Superprocesses
广义超级过程
- 批准号:
RGPIN-2016-06704 - 财政年份:2016
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Some unsolved and new problems on measure-valued stochastic processes
测值随机过程的一些未解决的新问题
- 批准号:
249554-2011 - 财政年份:2015
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Some unsolved and new problems on measure-valued stochastic processes
测值随机过程的一些未解决的新问题
- 批准号:
249554-2011 - 财政年份:2014
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Some unsolved and new problems on measure-valued stochastic processes
测值随机过程的一些未解决的新问题
- 批准号:
249554-2011 - 财政年份:2013
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Submesoscale Processes Associated with Oceanic Eddies
- 批准号:
- 批准年份:2022
- 资助金额:160 万元
- 项目类别:
相似海外基金
Understanding mixing, scaling and stress-related challenges in transient transfection processes
了解瞬时转染过程中的混合、缩放和与压力相关的挑战
- 批准号:
2881234 - 财政年份:2023
- 资助金额:
$ 1.09万 - 项目类别:
Studentship
Consequences of secondary contact between native and closely related exotic species: ecological processes and genome dynamics
本地物种和密切相关的外来物种之间二次接触的后果:生态过程和基因组动态
- 批准号:
23KJ2156 - 财政年份:2023
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Identification of blood biomarkers predictive of organ aging
鉴定预测器官衰老的血液生物标志物
- 批准号:
10777065 - 财政年份:2023
- 资助金额:
$ 1.09万 - 项目类别:
Mechanisms of Cellular Senescence Driving Intervertebral Disc Aging through Local Cell Autonomous and Systemic Non-Cell Autonomous Processes
细胞衰老通过局部细胞自主和全身非细胞自主过程驱动椎间盘老化的机制
- 批准号:
10635092 - 财政年份:2023
- 资助金额:
$ 1.09万 - 项目类别:
Effects of parental history of suicidal behavior on middle/late childhood: Longitudinal assessment of early markers of suicide risk
父母自杀行为史对童年中后期的影响:自杀风险早期标记的纵向评估
- 批准号:
10750571 - 财政年份:2023
- 资助金额:
$ 1.09万 - 项目类别:
Deciphering the role of mitochondrial/autophagy dysfunction in regulating inflammatory processes during AMD pathogenesis
破译线粒体/自噬功能障碍在 AMD 发病机制中调节炎症过程中的作用
- 批准号:
10664118 - 财政年份:2023
- 资助金额:
$ 1.09万 - 项目类别:
Effect of dietary restriction on intestinal stem cell aging
饮食限制对肠道干细胞衰老的影响
- 批准号:
10823900 - 财政年份:2023
- 资助金额:
$ 1.09万 - 项目类别:
Environmental Agents as Modulators of Disease Processes
环境因素作为疾病过程的调节剂
- 批准号:
10852393 - 财政年份:2023
- 资助金额:
$ 1.09万 - 项目类别:
The Impact of Normative Aging and Alzheimers Disease on Fear based Disorders and Amygdala Dysfunction
正常衰老和阿尔茨海默病对恐惧障碍和杏仁核功能障碍的影响
- 批准号:
10889548 - 财政年份:2023
- 资助金额:
$ 1.09万 - 项目类别:
Regulation of mitochondrial morphology and functional versatility
线粒体形态和功能多样性的调节
- 批准号:
10715704 - 财政年份:2023
- 资助金额:
$ 1.09万 - 项目类别: