High-Speed Low-Power Data Acquisition and Serial Data Communications

高速低功耗数据采集和串行数据通信

基本信息

  • 批准号:
    RGPIN-2014-03788
  • 负责人:
  • 金额:
    $ 2.7万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2014
  • 资助国家:
    加拿大
  • 起止时间:
    2014-01-01 至 2015-12-31
  • 项目状态:
    已结题

项目摘要

As the industry moves into the very deep submicron stages of integrated circuit device scaling, new techniques are being sought to improve performance of all types of analog and digital circuits. Vast amounts of digital logic can be placed in small chip area, allowing digital correction of analog circuit errors resulting from PVT (fabrication process, supply voltage and temperature) variations on circuit behavior. At the same time, the very small devices have small parasitic capacitances and resistances, resulting in much-improved switching speeds and analog bandwidths. Silicon-on-insulator (SOI) technology is particularly attractive, and results in lower manufacturing costs compared to bulk CMOS due to substantially lower mask count requirements during manufacture. These facts have lead to an examination of circuit techniques that move away from conventional voltage-based circuits to circuits that exploit the small switching times and timing differences that are available, to realize circuits such as Analog-to-Digital Converters (ADCs) and Serializer-Deserializer (SerDes) data communications circuits that are ubiquitous in modern electronic systems. Over the past 5 years, we have pioneered the first low-power time-based GigaSample/sec ADCs, enhancing performance using digital background correction of errors due to PVT variations, and also proposed new time-based Gigabit/sec SerDes architectures. Because this approach is new and exploratory, much work remains to be done in order to establish a comparison of performance limits compared to voltage-based circuits, and requires circuit fabrication and testing in the latest scaled SOI technologies. The ADCs that we have designed so far have a unique added advantage that an analog front-end voltage-to-time conversion circuit (a VTC) can be physically separated from a back-end Time-to-Digital Conversion circuit (a TDC), allowing designers to physically remove the noise-producing high-speed switching circuits from the sensitive analog front end, thereby improving the effective number of bits (ENOB) achieved by the converters. This could have special advantages in applications such as those in the world's next-generation radio telescope called the Square Kilometer Array, a 20-country international project in which we are heavily involved, and which will require possibly millions of low power, ultra-low-noise, ultra-high-gain, wideband signal chains for each antenna element in the vast array. The proposed circuits will also find applications in data and voice communications in next-generation software-defined radio, and in all aspects of data acquisition and transmission. In addition to the ADC research, I propose to examine new ways of increasing data throughput rates in SerDes systems without requiring more complicated and power-hungry circuits to transmit and receive the data. We have shown both theoretically and experimentally using field-programmable gate arrays (FPGAs) that high data rates can be achieved in time-based circuits using significantly lower clock rates that are required in conventional voltage-based SerDes systems. We have new ideas for increasing the data rates further without having to increase clock frequency. To compare performance with conventional systems, we need to design, fabricate and test complete chipsets in 28nm and smaller technologies. The ADCs can also be used as direct-digitizing receivers in conventional SerDes systems, and industrial firms are now moving in that direction for next-generation SerDes products. New high-performance TDCs are also being investigated by my research group, and those circuits have direct applications in Phase-locked-Loop (PLL) frequency synthesizers. We have a well-equipped measurement laboratory to support this research.
随着工业进入集成电路器件缩放的非常深的亚微米阶段,正在寻求新技术来提高所有类型的模拟和数字电路的性能。大量的数字逻辑可以放置在小芯片面积上,允许对由电路行为上的PVT(制造工艺、电源电压和温度)变化引起的模拟电路误差进行数字校正。同时,这些非常小的器件具有很小的寄生电容和电阻,从而大大提高了开关速度和模拟带宽。绝缘体上硅(SOI)技术特别有吸引力,并且由于在制造期间实质上更低的掩模数量要求,与体CMOS相比导致更低的制造成本。这些事实已经导致对电路技术的检查,该电路技术从传统的基于电压的电路转移到利用可用的小的切换时间和定时差的电路,以实现诸如在现代电子系统中普遍存在的模数转换器(ADC)和串行器-解串器(SerDes)数据通信电路的电路。在过去的5年中,我们率先推出了第一款低功耗时基千兆采样/秒ADC,通过对PVT变化引起的误差进行数字背景校正来增强性能,并提出了新的时基千兆/秒SerDes架构。由于这种方法是新的和探索性的,为了建立与基于电压的电路相比的性能限制的比较,还有很多工作要做,并且需要在最新的缩放SOI技术中进行电路制造和测试。迄今为止,我们设计的ADC具有独特的附加优势,即模拟前端电压-时间转换电路(VTC)可以与后端时间-数字转换电路(TDC)物理分离,使设计人员能够从敏感的模拟前端物理移除产生噪声的高速开关电路,从而提高转换器实现的有效位数(ENOB)。这在应用中可能具有特殊的优势,例如在世界上被称为平方公里阵列的下一代射电望远镜中的应用,这是一个20个国家的国际项目,我们积极参与其中,并且可能需要数百万个低功耗,超低噪声,超高增益,宽带信号链用于巨大阵列中的每个天线元件。所提出的电路还将在下一代软件定义无线电的数据和语音通信以及数据采集和传输的各个方面中找到应用。除了ADC的研究,我建议研究在SerDes系统中提高数据吞吐率的新方法,而不需要更复杂和功耗高的电路来发送和接收数据。我们已经在理论上和实验上使用现场可编程门阵列(FPGA),高数据速率可以实现在基于时间的电路使用显着降低时钟速率,在传统的基于电压的SerDes系统所需的。我们有了新的想法,可以在不增加时钟频率的情况下进一步提高数据速率。为了与传统系统进行性能比较,我们需要设计、制造和测试28纳米及更小技术的完整芯片组。ADC还可以用作传统SerDes系统中的直接数字化接收器,工业公司现在正朝着下一代SerDes产品的方向发展。我的研究小组也在研究新的高性能TDC,这些电路直接应用于锁相环(PLL)频率合成器。我们有一个设备齐全的测量实验室来支持这项研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Haslett, James其他文献

Haslett, James的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Haslett, James', 18)}}的其他基金

High-Speed Low-Power Data Acquisition and Serial Data Communications
高速低功耗数据采集和串行数据通信
  • 批准号:
    RGPIN-2014-03788
  • 财政年份:
    2018
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
High-Speed Low-Power Data Acquisition and Serial Data Communications
高速低功耗数据采集和串行数据通信
  • 批准号:
    RGPIN-2014-03788
  • 财政年份:
    2017
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
High-Speed Low-Power Data Acquisition and Serial Data Communications
高速低功耗数据采集和串行数据通信
  • 批准号:
    RGPIN-2014-03788
  • 财政年份:
    2016
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
High-Speed Low-Power Data Acquisition and Serial Data Communications
高速低功耗数据采集和串行数据通信
  • 批准号:
    RGPIN-2014-03788
  • 财政年份:
    2015
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
High speed serdes and ADC circuits
高速 Serdes 和 ADC 电路
  • 批准号:
    7776-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
High speed serdes and ADC circuits
高速 Serdes 和 ADC 电路
  • 批准号:
    7776-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
High speed serdes and ADC circuits
高速 Serdes 和 ADC 电路
  • 批准号:
    7776-2009
  • 财政年份:
    2011
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
High speed serdes and ADC circuits
高速 Serdes 和 ADC 电路
  • 批准号:
    7776-2009
  • 财政年份:
    2010
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
High speed serdes and ADC circuits
高速 Serdes 和 ADC 电路
  • 批准号:
    7776-2009
  • 财政年份:
    2009
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
RF circuit design for telecommunications
电信射频电路设计
  • 批准号:
    7776-2004
  • 财政年份:
    2008
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

MSCEN聚集体抑制CD127low单核细胞铜死亡治疗SLE 的机制研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
新型PDL1+CXCR2low中性粒细胞在脉络膜新生血管中的作用及机制研究
  • 批准号:
    82271095
  • 批准年份:
    2022
  • 资助金额:
    56 万元
  • 项目类别:
    面上项目
CD9+CD55low脂肪前体细胞介导高脂诱导脂肪组织炎症和2型糖尿病的作用和机制研究
  • 批准号:
    82270883
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
CD21low/-CD23-B细胞亚群在间质干细胞治疗慢性移植物抗宿主病中的作用机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
探究Msi1+Lgr5neg/low肠道干细胞抵抗辐射并驱动肠上皮再生的新机制
  • 批准号:
    82270588
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
m6A去甲基化酶FTO通过稳定BRD9介导表观重塑在HIF2α(low/-)肾透明细胞癌中的作用机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    54.7 万元
  • 项目类别:
    面上项目
circEFEMP1招募PRC2促进HOXA6启动子组蛋白甲基化修饰调控Claudin4-Low型TNBC迁移侵袭和转移的作用机制
  • 批准号:
    82002807
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
上皮间质转化在Numb-/low前列腺癌细胞雄激素非依赖性中的作用及机制
  • 批准号:
    82003061
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Bach2调控CD45RA-Foxp3low T细胞影响B细胞功能及其在系统性红斑狼疮中作用的机制研究
  • 批准号:
    81873863
  • 批准年份:
    2018
  • 资助金额:
    57.0 万元
  • 项目类别:
    面上项目

相似海外基金

Development of a High-Speed and Low-Power IPS Processor Capable of Dynamic and Automatic Generation of Decision Tree Circuits
开发能够动态自动生成决策树电路的高速低功耗IPS处理器
  • 批准号:
    22K12032
  • 财政年份:
    2022
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of a high-speed and ultra-low-power die-hard logic LSI fundamental technology for IoT applications
开发适用于物联网应用的高速、超低功耗顽固逻辑LSI基础技术
  • 批准号:
    21H04868
  • 财政年份:
    2021
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Integrating Superconducting and Spintronics Devices for Low-Power and High-Speed Operation and Brain-Inspired Computing
集成超导和自旋电子器件以实现低功耗和高速运行以及类脑计算
  • 批准号:
    2130845
  • 财政年份:
    2021
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Standard Grant
Creation of new magnetic wire memory with rare-earth and transition-metal ferri-magnetic magnetic wire that achieves both ultra-low power consumption and ultra-high speed
采用稀土和过渡金属铁磁磁线打造新型磁线存储器,实现超低功耗和超高速
  • 批准号:
    20H02185
  • 财政年份:
    2020
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CSR: Small: Reconfigurable In-Sensor Architectures for High Speed and Low Power In-situ Image Analysis
CSR:小型:可重构传感器内架构,用于高速、低功耗原位图像分析
  • 批准号:
    1946088
  • 财政年份:
    2019
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Continuing Grant
High-Speed Low-Power Data Acquisition and Serial Data Communications
高速低功耗数据采集和串行数据通信
  • 批准号:
    RGPIN-2014-03788
  • 财政年份:
    2018
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
A novel high-speed and low power ADC based on a tracking ADC suitable for the implementation in general ultradeepsubmicron technologies
一种基于跟踪 ADC 的新型高速低功耗 ADC,适合在一般超深亚微米技术中实现
  • 批准号:
    401080686
  • 财政年份:
    2018
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Research Grants
Fundamental research on germanium-tin narrow wires for high-speed/low-power MOSFETs
高速/低功率MOSFET用锗锡细线的基础研究
  • 批准号:
    17H04919
  • 财政年份:
    2017
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Grant-in-Aid for Young Scientists (A)
High-Speed Low-Power Data Acquisition and Serial Data Communications
高速低功耗数据采集和串行数据通信
  • 批准号:
    RGPIN-2014-03788
  • 财政年份:
    2017
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
  • 批准号:
    1686-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了